

Mathematics

Notation and Conventions

- N denotes the set of natural numbers {0,1,...}, ℤ the set of integers, ℚ the set of rational numbers, ℝ the set of real numbers, and ℂ the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are viewed as metric spaces using the standard Euclidean distance on \mathbb{R}^n .
- $M_n(\mathbb{R})$ denotes the real vector space of $n \times n$ real matrices, and $M_n(\mathbb{C})$ the complex vector space of $n \times n$ complex matrices. I denotes the identity matrix in $M_n(\mathbb{R}) \subset M_n(\mathbb{C})$.
- For any $A \in M_n(\mathbb{C})$, we denote by tr(A) the trace of A and by det(A) the determinant of A.
- All rings are associative, with a multiplicative identity.
- For a ring R, R[x] denotes the polynomial ring in one variable over R, and R^{\times} denotes the multiplicative group of units of R.
- All logarithms are natural logarithms.
- If B is a subset of a set A, we write $A \setminus B$ for the set $\{a \in A \mid a \notin B\}$.

PART A

Answer the following multiple choice questions.

1. Consider the sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ defined by

$$a_n = (2^n + 3^n)^{1/n}$$
 and $b_n = \frac{n}{\sum_{i=1}^n \frac{1}{a_i}}$.

What is the limit of $\{b_n\}_{n=1}^{\infty}$?

- (a) 2.
- 🖌 (b) 3.
 - (c) 5.
 - (d) The limit does not exist.
- 2. Consider the set of continuous functions $f:[0,1] \to \mathbb{R}$ that satisfy:

$$\int_0^1 f(x)(1 - f(x)) \, dx = \frac{1}{4}.$$

Then the cardinality of this set is:

- (a) 0.
- ✓ (b) 1.
 - (c) 2.
 - (d) more than 2.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as:

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0, \text{ and} \\ 0, & \text{if } x = 0. \end{cases}$$

Which of the following statements is correct?

- \checkmark (a) f is a surjective function.
 - (b) f is bounded.
 - (c) The derivative of f exists and is continuous on \mathbb{R} .
 - (d) $\{x \in \mathbb{R} \mid f(x) = 0\}$ is a finite set.
- 4. Let $\{a_n\}_{n=1}^{\infty}$ be a strictly increasing bounded sequence of real numbers such that $\lim_{n \to \infty} a_n = A$. Let $f : [a_1, A] \to \mathbb{R}$ be a continuous function such that for each positive integer $i, f|_{[a_i, a_{i+1}]} : [a_i, a_{i+1}] \to \mathbb{R}$ is either strictly increasing or strictly decreasing. Consider the set

 $B = \{M \in \mathbb{R} \mid \text{ there exist infinitely many } x \in [a_1, A] \text{ such that } f(x) = M \}.$

Then the cardinality of B is:

- (a) necessarily 0.
- \checkmark (b) at most 1.
 - (c) possibly greater than 1, but finite.
 - (d) possibly infinite.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function that satisfies:

$$|f(x) - f(y)| \le |x - y|| \sin(x - y)|, \text{ for all } x, y \in \mathbb{R}.$$

Which of the following statements is correct?

- (a) f is continuous but need not be uniformly continuous.
- (b) f is uniformly continuous but not necessarily differentiable.
- (c) f is differentiable, but its derivative may not be continuous.
- \checkmark (d) f is constant.

6. Let

$$\mathcal{C} = \left\{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable, and } \lim_{x \to \infty} (2f(x) + f'(x)) = 0 \right\}$$

Which of the following statements is correct?

- (a) For each L with $0 \neq L < \infty$, there exists $f \in \mathcal{C}$ such that $\lim_{x \to \infty} f(x) = L$.
- \checkmark (b) For all $f \in \mathcal{C}$, $\lim_{x \to \infty} f(x) = 0$.
 - (c) There exists $f \in \mathcal{C}$ such that $\lim_{x \to \infty} f(x)$ does not exist.
 - (d) There exists $f \in \mathcal{C}$ such that $\lim_{x \to \infty} f(x) = \frac{1}{2}$.
- 7. Let $f(x) = \frac{\log(2+x)}{\sqrt{1+x}}$ for $x \ge 0$, and $a_m = \frac{1}{m} \int_0^m f(t) dt$ for every positive integer m. Then the sequence $\{a_m\}_{m=1}^{\infty}$
 - (a) diverges to $+\infty$.
 - (b) has more than one limit point.
 - (c) converges and satisfies $\lim_{m \to \infty} a_m = \frac{1}{2} \log 2$.
- \checkmark (d) converges and satisfies $\lim_{m \to \infty} a_m = 0$.
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that:

$$|f(x) - f(y)| \ge \log(1 + |x - y|)$$
, for all $x, y \in \mathbb{R}$.

Then:

- (a) f is injective but not surjective.
- (b) f is surjective but not injective.
- (c) f is neither injective nor surjective.

 \checkmark (d) f is bijective.

9. What is the greatest integer less than or equal to

$$\sum_{n=1}^{9999} \frac{1}{\sqrt[4]{n}}?$$

 \checkmark (a) 1332

- (b) 1352
- (c) 1372
- (d) 1392
- 10. Consider the following sentences:
 - (I) For every connected subset Y of a metric space X, its interior Y° is connected.
 - (II) For every connected subset Y of a metric space X, its boundary ∂Y is connected.

Which of the following options is correct?

- (a) (I) is true, but (II) is false.
- (b) (II) is true, but (I) is false.
- (c) (I) and (II) are both true.
- \checkmark (d) (I) and (II) are both false.
- 11. Consider a set $\{A_1, \ldots, A_n\}$ of events, n > 1. Suppose that one of the events in $\{A_1, \ldots, A_n\}$ is certain to occur, but that no more than two of them can occur. Suppose that for each $1 \leq r, s \leq n$ such that $r \neq s$, the probability of A_r occurring is p, while the probability of both A_r and A_s occurring is q. Then:
 - (a) $p \leq 1/n$ and $q \leq 2/n$.
 - (b) $p \leq 1/n$ and $q \geq 2/n$.
- \checkmark (c) $p \ge 1/n$ and $q \le 2/n$.
 - (d) $p \ge 1/n$ and $q \ge 2/n$.
- 12. Let $\{z_1, z_2, \ldots, z_7\}$ be a set of seven complex numbers with unit modulus. Assume that they form the vertices of a regular heptagon in the complex plane. Define

$$w = \sum_{i < j} z_i z_j.$$

Then:

(a)
$$w = 0$$
.

- (b) $|w| = \sqrt{7}$.
- (c) |w| = 7.
- (d) |w| = 1.

- 13. Consider \mathbb{R}^3 as the space of 3×1 real matrices. The multiplicative group $\operatorname{GL}_3(\mathbb{R})$ of invertible 3×3 real matrices acts on this space by left multiplication. What is the number of orbits for this action?
 - (a) 1.
- ✓ (b) 2.
 - (c) 4.
 - (d) ∞ .
- 14. Let V be a finite dimensional vector space over \mathbb{R} , and $W \subset V$ a subspace. Then $W \cap T(W) \neq \{0\}$ for every linear automorphism $T: V \to V$ if and only if:
- (a) W = V. (b) $\dim W < \frac{1}{2} \dim V$. (c) $\dim W = \frac{1}{2} \dim V$. (d) $\dim W > \frac{1}{2} \dim V$.

15. Let $A \in M_n(\mathbb{C})$. Then $\begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ is diagonalizable if and only if:

- \checkmark (a) A = 0.
 - (b) A = I.
 - (c) n = 2.
 - (d) None of the other three options.
- 16. Let $T : \mathbb{C} \to \mathbb{R}$ be the map defined by $T(z) = z + \overline{z}$. For a \mathbb{C} -vector space V, consider the map

 $\varphi: \{f: V \to \mathbb{C} \mid f \text{ is } \mathbb{C}\text{-linear}\} \to \{g: V \to \mathbb{R} \mid g \text{ is } \mathbb{R}\text{-linear}\},\$

defined by $\varphi(f) = T \circ f$. Then this map is

- (a) injective, but not surjective.
- (b) surjective, but not injective.
- \checkmark (c) bijective.
 - (d) neither injective nor surjective.
- 17. Which of the following statements is correct for every linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T^3 T^2 T + I = 0$?
 - (a) T is invertible as well as diagonalizable.
- \checkmark (b) T is invertible, but not necessarily diagonalizable.
 - (c) T is diagonalizable, but not necessarily invertible.
 - (d) None of the other three statements.

- 18. Let $n \ge 2$. Which of the following statements is true for every $n \times n$ real matrix A of rank one?
- ✓ (a) There exist matrices $P, Q \in M_n(\mathbb{R})$ such that all the entries of the matrix PAQ are equal to 1.
 - (b) There exists an invertible matrix $P \in M_n(\mathbb{R})$ such that PAP^{-1} is a diagonal matrix.
 - (c) A has a nonzero eigenvalue.
 - (d) The vector $(1, 1, ..., 1) \in \mathbb{R}^n$ is an eigenvector for A.
- 19. Let m, n be positive integers. Then the greatest common divisor (gcd) of the polynomials $x^m 1$ and $x^n 1$ in the ring $\mathbb{C}[x]$ equals
 - (a) $x^{\min(m,n)} 1$.
 - (b) x 1.

$$\checkmark$$
 (c) $x^{\text{gcd}(m,n)}$ –

(d) None of the other three options.

1.

- 20. Let A_4 denote the group of even permutations of $\{1, 2, 3, 4\}$. Consider the following statements:
 - (I) There exists a surjective group homomorphism $A_4 \to \mathbb{Z}/4\mathbb{Z}$.
 - (II) There exists a surjective group homomorphism $A_4 \to \mathbb{Z}/3\mathbb{Z}$.

Which of the following statements is correct?

- (a) (I) is true and (II) is false.
- \checkmark (b) (II) is true and (I) is false.
 - (c) (I) and (II) are both true.
 - (d) (I) and (II) are both false.

PART B

True/False Questions.

- **F** 1. There exists no monotone function $f : \mathbb{R} \to \mathbb{R}$ which is discontinuous at every rational number.
- **T** 2. Let C([0,1]) denote the set of continuous real valued functions on [0,1], and $\mathbb{R}^{\mathbb{N}}$ the set of all sequences of real numbers. Then there exists an injective map from C([0,1]) to $\mathbb{R}^{\mathbb{N}}$.
- **T** 3. Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence of positive real numbers. Then:

$$\limsup_{n \to \infty} \frac{1}{a_n} = \frac{1}{\liminf_{n \to \infty} a_n}.$$

T 4. Let C([0, 1]) denote the metric space of continuous real valued functions on [0, 1] under the supremum metric - i.e., the distance between f and g in C([0, 1]) equals

$$\sup\{|f(x) - g(x)| \mid x \in [0, 1]\}.$$

Let $Q \subset C([0,1])$ be the set of all polynomials in $\mathbb{R}[x]$ in which the coefficient of x^2 is 0. Then Q is dense in C([0,1]).

- **F** 5. If X is a metric space such that every continuous function $f : X \to \mathbb{R}$ is uniformly continuous, then X is compact.
- **T** 6. Let X be a metric space, and let C(X) denote the \mathbb{R} -vector space of continuous real valued functions on X. Then X is infinite if and only if $\dim_{\mathbb{R}} C(X) = \infty$.
- **T** 7. Let A be a countable union of lines in \mathbb{R}^3 . Then $\mathbb{R}^3 \setminus A$ is connected.
- **T** 8. An invertible linear map from \mathbb{R}^2 to itself takes parallel lines to parallel lines.
- **F** 9. For any matrix C with entries in \mathbb{C} , let m(C) denote the minimal polynomial of C, and p(C) its characteristic polynomial. Then for any $n \in \mathbb{N}$, two matrices $A, B \in M_n(\mathbb{C})$ are similar if and only if m(A) = m(B) and p(A) = p(B).
- **T** 10. Let $A, B \in M_3(\mathbb{R})$. Then

$$\det(AB - BA) = \frac{\operatorname{tr}[(AB - BA)^3]}{3}$$

F 11. There exist an integer $r \ge 1$ and a symmetric matrix $A \in M_r(\mathbb{R})$ such that for all $n \in \mathbb{N}$, we have:

$$2^{\sqrt{n}} \le |\operatorname{tr}(A^n)| \le 2020 \cdot 2^{\sqrt{n}}.$$

- **T** 12. The polynomial $1 + x + \frac{x^2}{2!} + \dots + \frac{x^{101}}{101!}$ is irreducible in $\mathbb{Q}[x]$.
- **F** 13. There exists an integer n > 3 such that the group of units of the ring $\mathbb{Z}/2^n\mathbb{Z}$ is cyclic.
- **F** 14. For every surjective ring homomorphism $\varphi: R \to S$, we have $\varphi(R^{\times}) = S^{\times}$.
- **F** 15. Let G be a finite group and P a p-Sylow subgroup of G, where p is a prime number. Then for every subgroup H of G, $H \cap P$ is a p-Sylow subgroup of H.
- **T** 16. Let G be an abelian group, with identity element e. If

$$\{g \in G \mid g = e \text{ or } g \text{ has infinite order}\}$$

is a subgroup of G, then either all elements of $G \setminus \{e\}$ have infinite order, or all elements of G have finite order.

- **F** 17. There exists a natural number n, with $1 < n \le 10$, such that x^n and x are conjugate for every element x of S_7 , the group of permutations of $\{1, \ldots, 7\}$.
- **F** 18. Every noncommutative ring has at least 10 elements.

- **T** 19. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of elements in $\{0,1\}$ such that for all positive integers n, $\sum_{i=n}^{n+9} a_i$ is divisible by 3. Then there exists a positive integer k such that $a_{n+k} = a_n$ for all positive integers n.
- **T** 20. The interior of any strip bounded by two parallel lines in \mathbb{R}^2 , of width strictly greater than 1, contains a point with integer coordinates.