# **NUMERICAL ANALYSIS (PREVIOUS PAPERS NET)**

#### **DECEMBER - 2014**

### PART - C

- 1. Let  $f: \mathbb{R} \to \mathbb{R}$  be a smooth function with non-vanishing derivative. The Newton's method for finding a root of f(x) = 0 is the same as
  - fixed point iteration for the map g(x) = x f(x) / f'(x)
  - Forward Euler method with unit step length for the differential equation  $\frac{dy}{dx} + \frac{f(y)}{f'(y)} = 0$
  - fixed point iteration for g(x) = x + f(x)
  - fixed point iteration for g(x) = x f(x)
- Which of the following approximations for estimating the derivative of a smooth function f at a point x*2*. is of order 2 (i.e., the error term is  $O(h^2)$ )

1. 
$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

2. 
$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

3. 
$$f'(x) \approx \frac{3f(x) - 4f(x - h) + f(x - 2h)}{2h}$$

1. 
$$f'(x) \approx \frac{h}{h}$$
2.  $f'(x) \approx \frac{3f(x) - 4f(x - h) + f(x - 2h)}{2h}$ 
4.  $f'(x) \approx \frac{-3f(x) + 4f(x + h) - f(x + 2h)}{2h}$ 

- Let y(t) satisfy the differential equation  $y' = \lambda y$ ; y(0) = 1. Then the backward Euler method, for  $n \ge 1$ 3. and h > 0  $\frac{y_n - y_{n-1}}{h} = \lambda y_n$ ;  $y_0 = 1$  yields
  - 1. a first order approximation to  $e^{\lambda nh}$
  - 2. a polynomial approximation to  $e^{\lambda nh}$
  - 3. a rational function approximation to  $e^{\lambda nh}$
  - 4. a Chebyshev polynomial approximation to  $e^{\lambda nh}$

### **JUNE - 2015**

### PART - C

- 4. The following numerical integration formula is exact for all polynomials of degree less than or equal to 3
  - 1. Trapezoidal rule

2. Simpson's  $\frac{1}{3}$ rd rule

3. Simpson's  $\frac{3}{8}$ th rule

4. Gauss-Legendre 2 point formula

### **DECEMBER - 2015**

## PART – B

5. Let f(x) = ax + 100 for  $a \in \mathbb{R}$ . Then the iteration  $x_{n+1} = f(x_n)$  for  $n \ge 0$  and  $x_0 = 0$  converges for

1. 
$$a = 5$$

$$2. a = 1$$

3. 
$$a = 0.1$$

$$4. a = 10$$

### PART - C

- 6. The iteration  $x_{n+1} = \frac{1}{2} \left( x_n + \frac{2}{x_n} \right)$ ,  $n \ge 0$  for a given  $x_0 \ne 0$  is an instance of
  - 1. fixed point iteration for  $f(x) = x^2 2$
  - 2. Newton's method for  $f(x) = x^2 2$
  - 3. fixed point iteration for  $f(x) = \frac{x^2 + 2}{2x}$
  - 4. Newton's method for  $f(x) = x^2 + 2$
- 7. Let  $f(x) = \sqrt{x+3}$  for  $x \ge -3$ . Consider the iteration  $x_{n+1} = f(x_n)$ ,  $x_0 = 0$ ;  $n \ge 0$  The possible limits of the iteration are

4. 
$$\sqrt{3+\sqrt{3+\sqrt{3+...}}}$$

# **JUNE - 2016**

# PART - B

- 8. Let  $f(x) = x^2 + 2x + 1$  and the derivative of f at x = 1 is approximated by using the central-difference formula  $f'(1) \approx \frac{f(1+h) f(1-h)}{2h}$  with  $h = \frac{1}{2}$ . Then the absolute value of the error in the approximation of f'(1) is equal to
  - 1. 1

- 2.1/2
- *3. 0*

4. 1/12

# PART - C

- *Let* H(x) *be the cubic Hermite interpolation of*  $f(x) = x^4 + 1$  *on the interval* I = [0,1] *interpolating at* x = 0 *and* x = 1. *Then* 
  - 1.  $\max_{x \in I} |f(x) H(x)| = \frac{1}{16}$ .
  - 2. The maximum of |f(x) H(x)| is attained at  $x = \frac{1}{2}$ .

### BE INFORMED BE LEARNED

3. 
$$\max_{x \in I} |f(x) - H(x)| = \frac{1}{21}$$
.

4. The maximum of 
$$|f(x)-H(x)|$$
 is attained at  $x=\frac{1}{4}$ .

10. Consider the Runge-Kutta method of the form 
$$y_{n+1} = y_n + ak_1 + bk_2$$
  
 $k_1 = hf(x_n, y_n)$ 

 $k_2 = hf(x_n + \alpha h, y_n + \beta k_1)$  to approximate the solution of the initial value problem

 $y'(x) = f(x, y(x)), y(x_0) = y_0$ . Which of the following choices of a, b,  $\alpha$  and  $\beta$  yield a second order

1. 
$$a = \frac{1}{2}, b = \frac{1}{2}, \alpha = 1, \beta = 1$$

2. 
$$a = 1, b = 1, \alpha = \frac{1}{2}, \beta = \frac{1}{2}$$

3. 
$$a = \frac{1}{4}, b = \frac{3}{4}, \alpha = \frac{2}{3}, \beta = \frac{2}{3}$$
4.  $a = \frac{3}{4}, b = \frac{1}{4}, \alpha = 1, \beta = 1$ 

4. 
$$a = \frac{3}{4}, b = \frac{1}{4}, \alpha = 1, \beta = 1$$

- Let  $f: [0,3] \to \mathbb{R}$  be defined by f(x) = |1 |x 2|, where,  $|\cdot|$  denotes the absolute value. Then for the *11*. numerical approximation of  $\int_0^s f(x)dx$ , which of the following statements are true?
  - *The composite trapezoid rule with three equal subintervals is exact.*
  - The composite midpoint rule with three equal subintervals is exact. 2.
  - The composite trapezoid rule with four equal subintervals is exact.
  - *The composite midpoint rule with four equal subintervals is exact.*

# DECEMBER - 2016

# PART - B

The values of  $\alpha$  and  $\beta$ , such that  $x_{n+1} = \alpha x_n \left(3 - \frac{x_n^2}{\alpha}\right) + \beta x_n \left(1 + \frac{a}{x^2}\right)$  has  $3^{rd}$  order convergence to *12*.

$$\sqrt{a}$$
, are

1. 
$$\alpha = \frac{3}{8}, \beta = \frac{1}{8}$$
.

3. 
$$\alpha = \frac{2}{8}, \beta = \frac{2}{8}$$

2. 
$$\alpha = \frac{1}{8}, \beta = \frac{3}{8}$$
.

4. 
$$\alpha = \frac{1}{4}, \beta = \frac{3}{4}$$
.

# PART - C

- The order of linear multi step method  $u_{j+1} = (1-a)u_j + au_{j-1} + \frac{h}{4}\{(a+3)u'_{j+1} + (3a+1)u'_{j-1}\}$  for *13*. solving u' = f(x,u) is
  - 1. 2 if a = -1

2. 2 if a = -2

3. 3 if a = -1

4. 3 if a = -2

### **JUNE - 2017**

### PART - B

The magnitude of the truncation error for the scheme f'(x) = Af(x) + Bf(x+h) + Cf(x+2h) is 14.

1. 
$$h^2 f'''(\xi)$$
 if  $A = -\frac{5}{6h}$ ,  $B = \frac{3}{2h}$ ,  $C = -\frac{2}{3h}$ .

2. 
$$h^2 f'''(\xi)$$
 if  $A = \frac{5}{6h}$ ,  $B = \frac{3}{2h}$ ,  $C = \frac{2}{3h}$ .

3. 
$$h^2 f''(x)$$
 if  $A = -\frac{5}{6h}$ ,  $B = \frac{3}{2h}$ ,  $C = -\frac{2}{3h}$ .

4. 
$$h^2 f''(x)$$
 if  $A = \frac{5}{6h}$ ,  $B = \frac{3}{2h}$ ,  $C = \frac{2}{3h}$ .

#### **DECEMBER - 2017**

### PART - B

The iterative method  $x_{n+1} = g(x_n)$  for the solution of  $x^2 - x - 2 = 0$  converges quadratically in a *15.* neighbourhood of the root x = 2 if g(x) equals

1. 
$$x^2 - 2$$

2. 
$$(x-2)^2-6$$
 3.  $1+\frac{2}{x}$ 

3. 
$$1 + \frac{2}{x}$$

4. 
$$\frac{x^2+2}{2x-1}$$

# PART - C

Consider the linear system Ax=b with  $A=\begin{bmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -3 & -2 & 1 \end{bmatrix}$ . Let  $x_n$  denote the nth Gauss-Seidel *16.* 

iteration and  $e_n = x_n - x$ . Let M be the corresponding matrix such that  $e_{n+1} = Me_n$ ,  $n \ge 0$ . Which of the following statements are necessarily true?

- all eigenvalues of M have absolute value less than 1
- there is an eigenvalues of M with absolute value at least 1
- $e_n$  converges to 0 as  $n \rightarrow \infty$  for all  $b \in \mathbb{R}^3$  and any  $e_0$
- 4.  $e_n$  does not converge to 0 as  $n \rightarrow \infty$  for any  $b \in \mathbb{R}^3$  unless  $e_0 = 0$
- For  $f \in C[0,1]$  and n > 1, let  $T(f) = \frac{1}{n} \left[ \frac{1}{2} f(0) + \frac{1}{2} f(1) + \sum_{j=1}^{n-1} f\left(\frac{j}{n}\right) \right]$  be an approximation of the *17*.

integral  $I(f) = \int_0^1 f(x) dx$ . For which of the following functions f is T(f) = I(f)?

1.  $1 + \sin 2\pi nx$ 

2.  $1 + cos2\pi nx$ 

3.  $sin^2 2\pi nx$ 

4.  $\cos^2 2\pi (n+1)x$ 

### **JUNE - 2018**

### PART - B

18. The values of a,b,c such that  $\int_{0}^{h} f(x)dx = h\left\{af(0) + bf\left(\frac{h}{3}\right) + cf(h)\right\}$  is exact for polynomials f of

degree as high as possible are

1. a = 0,  $b = \frac{3}{4}$ ,  $c = \frac{1}{4}$ 

2.  $a = \frac{3}{4}$ ,  $b = \frac{2}{4}$ ,  $c = \frac{1}{4}$ 

3.  $a = \frac{-2}{4}$ ,  $b = \frac{3}{4}$ ,  $c = \frac{1}{4}$ 

4. a = 0,  $b = \frac{1}{4}$ ,  $c = \frac{3}{4}$ 

## PART - C

Assume that a non-singular matrix A = L + D + U, where L and U are lower and upper triangular matrices respectively with all diagonal entries are zero, and D is a diagonal matrix. Let  $x^*$  be the solution of Ax = b. Then the Gauss-Seidel iteration method  $x^{(k+1)} = Hx^{(k)} + c$ , k = 0, 1, 2, ... with ||H|| < 1 converges to  $x^*$  provided H is equal to

1. 
$$-D^{-1}(L + U)$$

$$2.-(D+L)^{-1}U$$

$$3. -D (L + U)^{-1}$$

4. 
$$-(L-D)^{-1}U$$

20. The forward difference operator is defined as  $\Delta U_n = U_{n+1} - U_n$ . Then which of the following difference equations has an unbounded general solution?

$$1. \quad \Delta^2 U_n - 3\Delta U_n + 2U_n = 0$$

2. 
$$\Delta^2 U_n + \Delta U_n + \frac{1}{4} U_n = 0$$

$$3. \ \Delta^2 U_n - 2\Delta U_n + 2U_n = 0$$

4. 
$$\Delta^2 U_{n+1} - \frac{1}{3} \Delta^2 U_n = 0$$

# DECEMBER - 2018

### PART - B

21. Let f(x) be a polynomial of unknown degree taking the values

| • | •    |   |   | $\circ$ | 0  |
|---|------|---|---|---------|----|
|   | x    | 0 | 1 | 2       | 3  |
|   | f(x) | 2 | 7 | 13      | 16 |

All the fourth divided differences are -1/6. Then the coefficient of  $x^3$  is

1. 1/3

- 2. -2/3
- 3. 16

4. -1

### **BE INFORMED BE LEARNED**

#### PART - C

22. Let  $f: [0, 1] \to [0, 1]$  be twice continuously differentiable function with a unique fixed point  $f(x_*) = x_*$ . For a given  $x_0 \in (0, 1)$  consider the iteration  $x_{n+1} = f(x_n)$  for  $n \ge 0$ .

If  $L = \max_{x \in [0,1]} |f'(x)|$ , then which of the following are true?

- 1. If L < 1, then  $x_n$  converges to  $x_*$ .
- 2.  $x_n$  converges to  $x_*$  provided  $L \ge 1$ .
- 3. The error  $e_n = x_n x_*$  satisfies  $|e_{n+1}| \le L|e_n|$ .
- 4. If  $f'(x_*) = 0$ , then  $|e_{n+1}| < C |e_n|^2$  for some C > 0.
- 23. Let u(x) satisfy the boundary value problem (BVP)  $\begin{cases} u'' + u' = 0, & x \in (0,1) \\ u(0) = 0 \\ u(1) = 1 \end{cases}$

Consider the finite difference approximation to (BVP)

$$(BVP)_{h} \begin{cases} \frac{U_{j+1} - 2U_{j} + U_{j-1}}{h^{2}} + \frac{U_{j+1} - U_{j-1}}{2h} = 0, j = 1,..., N - 1 \\ U_{0} = 0 \\ U_{N} = 1 \end{cases}$$

Here  $U_j$  is an approximation to  $u(x_j)$ , where  $x_j = jh$ , j = 0, ..., N is a partition of [0, 1] with h = 1/N for some positive integer N. Then which of the following are true?

- 1. There exists a solution to  $(BVP)_h$  of the form  $U_j = ar^j + b$  for some  $a, b \in \mathbb{R}$  with  $r \neq 1$  and r satisfying  $(2+h)r^2 4r + (2-h) = 0$
- 2.  $U_i = (r^i 1) / (r^N 1)$  where r satisfies  $(2 + h) r^2 4r + (2 h) = 0$  and  $r \neq 1$
- 3. u is monotonic in x
- 4.  $U_i$  is monotonic in j.

#### **JUNE - 2019**

#### PART - B

24. Consider solving the following system by Jacobi iteration scheme

$$x + 2my - 2mx = 1$$
$$nx + y + nz = 2$$

2mx + 2my + z = 1, where  $m, n \in \mathbb{Z}$ . With any initial vector, the scheme converges provided m, n, satisfy 1. m + n = 3 2. m > n 3. m < n 4. m = n

### PART - C

**25.** The values of a, b, c so that the truncation error in the formula  $\int_{-h}^{h} f(x) dx = ahf(-h) + bhf(0) + ahf(h) + ch^{2} f'(-h) - ch^{2} f'(h) \text{ is minimum, are}$ 

### **BE INFORMED BE LEARNED**

1. 
$$a = \frac{7}{15}, b = \frac{16}{15}, c = \frac{1}{15}$$

3. 
$$a = \frac{7}{15}, b = \frac{-16}{15}, c = \frac{1}{15}$$

2. 
$$a = \frac{7}{15}, b = \frac{16}{15}, c = \frac{-1}{15}$$

4. 
$$a = \frac{7}{15}, b = \frac{-16}{15}, c = \frac{-1}{15}$$

**26.** Consider the equation  $x^2 + ax + b = 0$  which has two real roots  $\alpha$  and  $\beta$ . Then which of the following iteration scheme converges when  $x_0$  is chosen sufficiently close to  $\alpha$ ?

1. 
$$x_{n+1} = -\frac{ax_n + b}{x_n}$$
, if  $|\alpha| > |\beta|$ 

3. 
$$x_{n+1} = -\frac{b}{x + a}$$
, if  $|\alpha| < |\beta|$ 

2. 
$$x_{n+1} = -\frac{x_n^2 + b}{a}$$
, if  $|\alpha| > 1$ 

4. 
$$x_{n+1} = -\frac{x_n^2 + b}{\alpha}$$
, if  $2|\alpha| < |\alpha + \beta|$ 

### **DECEMBER - 2019**

### PART - B

27. Let  $x = \xi$  be a solution of  $x^4 - 3x^2 + x - 10 = 0$ . The rate of convergence for the iterative method  $x_{n+1} = 10 - x_n^4 + 3x_n^2$  is equal to 1. 1 2. 2 3. 3 4. 4

PART - C

28. Consider the ordinary differential equation (ODE)

$$\begin{cases} y'(x) + y(x) = 0, & x > 0, \\ y(0) = 1. \end{cases}$$

and the following numerical scheme to solve the ODE

$$\begin{cases} \frac{Y_{n+1} - Y_{n-1}}{2h} + Y_{n-1} = 0, & n \ge 1, \\ Y_0 = 1, Y_1 = 1. \end{cases}$$

If  $0 < h < \frac{1}{2}$ , then which of the following statements are true?

1. 
$$(Y_n) \to \infty$$
 as  $n \to \infty$ 

2. 
$$(Y_n) \to 0 \text{ as } n \to \infty$$

3. 
$$(Y_n)$$
 is bounded

4. 
$$\max_{nh \in [0,T]} |y(nh) - Y_n| \rightarrow \infty \text{ as } T \rightarrow \infty$$

**29.** The values of  $\alpha$ , A, B, C for which the quadrature formula

$$\int_{-1}^{1} (1-x) f(x) dx = Af(-\alpha) + Bf(0) + Cf(\alpha)$$

### BE INFORMED BE LEARNED

is exact for polynomials of highest possible degree, are

1. 
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} + \frac{\sqrt{5}}{3\sqrt{3}}, B = \frac{8}{9}, C = \frac{5}{9} - \frac{\sqrt{5}}{3\sqrt{3}}$$

1. 
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} + \frac{\sqrt{5}}{3\sqrt{3}}, B = \frac{8}{9}, C = \frac{5}{9} - \frac{\sqrt{5}}{3\sqrt{3}}$$
2.  $\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} - \frac{\sqrt{5}}{3\sqrt{3}}, B = \frac{8}{9}, C = \frac{5}{9} + \frac{\sqrt{5}}{3\sqrt{3}}$ 

3. 
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} \left( 1 - \frac{\sqrt{3}}{\sqrt{5}} \right), B = \frac{8}{9}, C = \frac{5}{9} \left( 1 + \frac{\sqrt{3}}{\sqrt{5}} \right)$$

3. 
$$\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} \left( 1 - \frac{\sqrt{3}}{\sqrt{5}} \right), B = \frac{8}{9}, C = \frac{5}{9} \left( 1 + \frac{\sqrt{3}}{\sqrt{5}} \right)$$
4.  $\alpha = \sqrt{\frac{3}{5}}, A = \frac{5}{9} \left( 1 + \frac{\sqrt{3}}{\sqrt{5}} \right), B = \frac{8}{9}, C = \frac{5}{9} \left( 1 - \frac{\sqrt{3}}{\sqrt{5}} \right)$ 

### DECEMBER - 2019 (Assam)

### PART - B

Assume that  $a, b \in \mathbb{R}\setminus\{0\}$  and  $a^2 \neq b^2$ . Suppose that the Gauss-Seidel method is used to solve the system *30*.

$$\begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Then the set of all values of (a, b) such that the method converges for every choice of initial vector is

1. 
$$\{(a, b) \mid a^2 < b^2\}$$

2. 
$$\{(a, b) \mid a < |b|\}$$

3. 
$$\{(a, b) \mid |b| < |a|\}$$

4. 
$$\{(a, b) \mid a^2 + b^2 < 1\}$$

# PART - C

Consider the first order initial value problem y'(x) = -y(x), x > 0, y(0) = 1 and the corresponding *31*. numerical scheme  $4\left(\frac{y_{n+1}-y_{n-1}}{2h}\right)-3\left(\frac{y_{n+1}-y_n}{h}\right)=-y_n$ , with  $y_0=1$ ,  $y_1=e^{-h}$ , where h is the step size.

Then which of the following statements are true?

3. 
$$|y_n - y(nh)| \to \infty \text{ as } n \to \infty$$

4. 
$$|y_n - y(nh)| \rightarrow 0$$
 as  $n \rightarrow \infty$ 

*32*. Consider the integration formula

$$\int_{x_0}^{x_1} f(x) dx = \frac{h}{2} [f(x_0) + f(x_1)] + ph^2 (f'(x_0) - f'(x_1)),$$

where  $h = x_1 - x_0$ . Then the constant p such that the above formula gives the exact value of the highest degree polynomial and the degree d of the corresponding polynomial are given by

1. 
$$p = \frac{1}{6}, d = 4$$

2. 
$$p = \frac{1}{12}, d = 3$$

3. 
$$p = \frac{1}{6}, d = 3$$

4. 
$$p = \frac{1}{12}, d = 4$$

### **JUNE - 2020**

### PART - B

33. Let f be an infinitely differentiable real-valued function on a bounded interval I. Take  $n \ge 1$  interpolation points  $\{x_0, x_1, ..., x_{n-1}\}$ . Take n additional interpolation points

$$x_{n+j} = x_j + \varepsilon, j = 0, 1, ..., n-1$$

where  $\varepsilon > 0$  is such that  $\{x_0, x_1, ..., x_{2n-1}\}$  are all distinct.

Let  $p_{2n-1}$  be the Lagrange interpolation polynomial of degree 2n-1 with the interpolation points  $\{x_0, x_1, ..., x_{2n-1}\}$  for the function f.

Let  $q_{2n-1}$  be the Hermite interpolation polynomial of degree 2n-1 with the interpolation points  $\{x_0, x_1, \dots, x_{n-1}\}$  for the function f. In the  $\varepsilon \to 0$  limit, the quantity

$$\sup_{x \in I} |p_{2n-1}(x) - q_{2n-1}(x)|$$

- 1. does not necessarily converge
- 2. converges to  $\frac{1}{2n}$

3. converges to 0

4. converges to  $\frac{1}{2n+1}$ 

### PART - C

34. Fix a  $\alpha \in (0, 1)$ . Consider the iteration defined by

(\*) 
$$x_{k+1} = \frac{1}{2}(x_k^2 + \alpha), k = 0, 1, 2, ...$$

The above iteration has two distinct fixed points  $\zeta_1$  and  $\zeta_2$  such that  $0 < \zeta_1 < 1 < \zeta_2$ . Which of the following statements are true?

- 1. The iteration (\*) is equivalent to the recurrence relation  $x_{k+2} \zeta_1 = \frac{1}{2}(x_k + \zeta_1)(x_k \zeta_1)$ , k = 0, 1, 2, ...
- 2. The iteration (\*) is equivalent to the recurrence relation  $x_{k+1} \zeta_1 = \frac{1}{2}(x_k + \zeta_2)(x_k \zeta_1)$ , k = 0, 1, 2, ...
- 3. If  $0 \le x_0 < \zeta_2$  then  $\lim_{k \to \infty} x_k = \zeta_1$
- 4. If  $-\zeta_2 < x_0 \le 0$  then  $\lim_{k \to \infty} x_k = \zeta_1$
- 35. Consider the function  $f:[0, 1] \to \mathbb{R}$  defined by

$$f(x) := \begin{cases} 2^{-\left\{1 + \left(\log_2\left(\frac{1}{x}\right)\right)^{\frac{1}{\beta}}\right\}^{\beta}} & \text{for } x \in (0,1] \\ 0 & \text{for } x = 0, \end{cases}$$

where  $\beta \in (0, \infty)$  is a parameter. Consider the iterations

### **BE INFORMED BE LEARNED**

$$x_{k+1} = f(x_k), k = 0, 1, \dots; x_0 > 0.$$

Which of the following statements are true about the iteration?

- 1. For  $\beta = 1$ , the sequence  $\{x_k\}$  converges to 0 linearly with asymptotic rate of convergence  $\log_{10} 2$
- 2. For  $\beta > 1$ , the sequence  $\{x_k\}$  does not converge to 0
- 3. For  $\beta \in (0, 1)$ , the sequence  $\{x_k\}$  converges to 0 sublinearly
- 4. For  $\beta \in (0, 1)$ , the sequence  $\{x_k\}$  converges to 0 superlinearly

### JUNE - 2020 (Tamil Nadu)

### PART - B

*Consider the Newton-Raphson method applied to approximate the square root of a positive number*  $\alpha$ . *A recursion relation for the error*  $e_n = x_n - \sqrt{\alpha}$  *is given by* 

1. 
$$e_{n+1} = \frac{1}{2} \left( e_n + \frac{\alpha}{e_n} \right)$$

2. 
$$e_{n+1} = \frac{1}{2} \left( e_n - \frac{\alpha}{e_n} \right)$$

3. 
$$e_{n+1} = \frac{1}{2} \frac{e_n^2}{e_n + \sqrt{\alpha}}$$

4. 
$$e_{n+1} = \frac{e_n^2}{e_n + 2\sqrt{\alpha}}$$

### PART - C

37. Consider the numerical integration formula

 $\int_{-1}^{1} g(x) dx \approx g(\alpha) + g(-\alpha)$ , where  $\alpha = (0.2)^{1/4}$ . Which of the following statements are true?

- 1. The integration formula is exact for polynomials of the form a + bx, for all  $a, b \in \mathbb{R}$
- 2. The integration formula is exact for polynomials of the form  $a + bx + cx^2$ , for all  $a, b, c \in \mathbb{R}$
- 3. The integration formula is exact for polynomials of the form  $a + bx + cx^2 + dx^3$ , for all  $a, b, c, d \in \mathbb{R}$
- 4. The integration formula is exact for polynomials of the form  $a + bx + cx^3 + dx^4$  for all  $a, b, c, d \in \mathbb{R}$

### **JUNE - 2021**

# PART - B

38. Let the solution to the initial value problem

$$y' = y - t^2 + 1$$
,  $0 \le t \le 2$ ,  $y(0) = 0.5$ 

be computed using the Euler's method with step-length h = 0.4. If y(0.8) and w(0.8) denote the exact and approximate solutions at t = 0.8, then an error bound for Euler's method is given by

1. 
$$0.2(0.5e^2-2)(e^{0.4}-1)$$

2. 
$$0.1(e^{0.4}-1)$$

3. 
$$0.2(0.5e^2-2)(e^{0.8}-1)$$

4. 
$$0.1(e^{0.8}-1)$$

### **BE INFORMED BE LEARNED**

*39.* Let  $a, b, c \in \mathbb{R}$  be such that the quadrature rule

$$\int_{-1}^{1} f(x) dx = af(-1) + bf'(0) + cf'(1)$$

is exact for all polynomials of degree less than or equal to 2. The a + b + c equal to

### PART - C

**40.** The values of a, b, c, d, e for which the function

$$f(x) = \begin{cases} a(x-1)^2 + b(x-2)^3 & -\infty < x \le 2\\ c(x-1)^2 + d & 2 \le x \le 3\\ (x-1)^2 + e(x-3)^3 & 3 \le x < \infty \end{cases}$$

is a cubic spline are

1. 
$$a = c = 1$$
,  $d = 0$ ,  $b$ ,  $e$  are arbitrary

2. 
$$a = b = c = 1$$
,  $d = 0$ , e is arbitrary

3. 
$$a = b = c = d = 1$$
, e is arbitrary

4. 
$$a = b = c = d = e = 1$$

41. Consider the Euler method for integration of the system of differential equations

$$\dot{x} = -y$$

$$\dot{y} = x$$

- Assume that  $(x_i^n, y_i^n)$  are the points obtained for  $i = 0, 1, ..., n^2$  using a time-step h = 1/n starting at the initial point  $(x_0, y_0) = (1, 0)$ . Which of the following statements are true?
- 1. The points  $(x_i^n, y_i^n)$  lie on a circle of radius 1
- 2.  $\lim_{n\to\infty} (x_n^n, y_n^n) = (\cos(1), \sin(1))$
- 3.  $\lim_{n\to\infty} (x_2^n, y_2^n) = (1,0)$
- 4.  $(x_i^n)^2 + (y_i^n)^2 > 1$  for  $i \ge 1$

### **JUNE - 2022**

# PART - B

42. Let A be following invertible matrix with real positive entries  $A = \begin{pmatrix} 1 & 2 \\ 8 & 9 \end{pmatrix}$ . Let G be the associated

Gauss-Seidel iteration matrix. What are the two eigenvalues of G?

1. 0 and 
$$\frac{4}{3}$$

2. 0 and 
$$-\frac{4}{3}$$

3. 0 and 
$$\frac{16}{9}$$

4. 
$$\frac{4}{3}$$
 and  $-\frac{4}{3}$ 

### PART - C

- Consider the ODE  $\dot{x} = f(t,x)$  in  $\mathbb{R}$ , for a smooth function f. Consider a general second order Runge-Kutta formula of the form  $x(t+h) = x(t) + w_1 h f(t,x) + w_2 h f(t+\alpha h,x+\beta h f) + 0(h^3)$ . Which of the following choices of  $(w_1, w_2, \alpha, \beta)$  are correct?
  - $I.\left(\frac{1}{2},\frac{1}{2},1,1\right)$

 $2.\left(\frac{1}{2},1,\frac{1}{2},1\right)$ 

 $3.\left(\frac{1}{4},\frac{3}{4},\frac{2}{3},\frac{2}{3}\right)$ 

4. (0, 1, 1, 1)

### **JUNE - 2023**

### PART - B

44. Which of the following values of a, b, c and d will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has degree of precision 3?

1. 
$$a = 1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

2. 
$$a = -1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

3. 
$$a = 1, b = 1, c = -\frac{1}{3}, d = -\frac{1}{3}$$

4. 
$$a = 1, b = -1, c = \frac{1}{3}, d = -\frac{1}{3}$$

## DECEMBER - 2023

# PART - B

45. Using Euler's method with the step size 0.05, the approximate value of the solution for the initial value problem

$$\frac{dy}{dx} = \sqrt{3x + 2y + 1}, y(1) = 1,$$

at x = 1.1 (rounded off to two decimal places), is

(1) 1.50

(2) 1.65

(3) 1.25

(4) 1.15

# PART - C

**46.** The coefficient of  $x^3$  in the interpolating polynomial for the data

### BE INFORMED BE LEARNED

is

(1) 
$$-\frac{1}{3}$$
 (2)  $-\frac{1}{2}$  (3)  $\frac{5}{6}$ 

$$(2) - \frac{1}{2}$$

(3) 
$$\frac{5}{6}$$

(4) 
$$\frac{17}{6}$$

Consider the initial value problem *47*.

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0,$$

where f is a twice continuously differentiable function on a rectangle containing the point  $(x_0, y_0)$ . With the step-size h, let the first iterate of a second order scheme to approximate the solution of the above initial value problem be given by  $y_1 = y_0 + Pk_1 + Qk_2$ ,

where  $k_1 = hf(x_0, y_0)$ ,  $k_2 = hf(x_0 + \alpha_0 h, y_0 + \beta_0 k_1)$  and P, Q,  $\alpha_0$ ,  $\beta_0 \in \mathbb{R}$ . Which of the following statements are correct?

(1) If 
$$\alpha_0 = 2$$
, then  $\beta_0 = 2$ ,  $P = \frac{3}{4}$ ,  $Q = \frac{1}{4}$ 

(2) If 
$$\beta_0 = 3$$
, then  $\alpha_0 = 3$ ,  $P = \frac{5}{6}$ ,  $Q = \frac{1}{6}$ 

(3) If 
$$\alpha_0 = 2$$
, then  $\beta_0 = 2$ ,  $P = \frac{1}{4}$ ,  $Q = \frac{3}{4}$ 

(4) If 
$$\beta_0 = 3$$
, then  $\alpha_0 = 3$ ,  $P = \frac{1}{6}$ ,  $Q = \frac{5}{6}$ 



Ph: 9876788051, 9650838031

# **BE INFORMED BE LEARNED**

# **ANSWER KEY**

| 1. (1,2)         | 2.(2,3,4)      | 3. (1, 3)      | 4. (2,3,4)         | 5. (3)           | 6. (2, 3)      |
|------------------|----------------|----------------|--------------------|------------------|----------------|
| 7.(4)            | 8. (3)         | 9. (1,2)       | 10.(1,3)           | 11. (1,2)        | 12. (2)        |
| <i>13. (2,3)</i> | 14. (*)        | 15.(4)         | 16. (2,4)          | 17. (1)          | 18.(1)         |
| 19.(2)           | 20. (1,3,4)    | 21. (1)        | <i>22.</i> (1,3,4) | 23. (1, 2, 3, 4) | <i>24. (4)</i> |
| 25. (1)          | 26. (1,3,4)    | 27. (1)        | 28. (2,3)          | 29. (1,4)        | <i>30. (3)</i> |
| 31. (1,3)        | <i>32. (2)</i> | <i>33. (3)</i> | 34. (1)            | <i>35. (1,3)</i> | <i>36. (3)</i> |
| <i>37. (1)</i>   | 38. (3)        | <i>39</i> .    | 40. (1,2)          | 41. (2,3,4)      | 42. (3)        |
| 43. (1,3)        | 44. (1)        | <i>45</i> .    | 46.                | 47.              |                |