Joint Admission Test for Masters 2021 14th Feb S2

Candidate ID	
Candidate Name	The same of the sa
Test Center Name	iON Digital Zone iDZ Jaulan Kalan
Test Date	14/02/2021
Test Time	3:00 PM - 6:00 PM
Subject	MATHEMATICS

Section: Section A

Q.1 Which one of the following subsets of \mathbb{R} has a non-empty interior?

- The set $\{b \in \mathbb{R} : x^2 + bx + 1 = 0 \text{ has distinct roots}\}.$
 - ^{2.} The set of all irrational numbers in \mathbb{R} .
 - 3. The set of all rational numbers in \mathbb{R} .
 - 4. The set $\{a \in \mathbb{R} : \sin(a) = 1\}$.

Question Type: MCQ Question ID: 111686308 Status: Answered

Chosen Option: 1

Q.2 Let $P: \mathbb{R} \to \mathbb{R}$ be a continuous function such that P(x) > 0 for all $x \in \mathbb{R}$. Let y be a twice differentiable function on \mathbb{R} satisfying y''(x) + P(x)y'(x) - y(x) = 0 for all $x \in \mathbb{R}$. Suppose that there exist two real numbers $a, b \ (a < b)$ such that y(a) = y(b) = 0. Then

Options 1.
$$y(x) < 0$$
 for all $x \in (a,b)$.

2.
$$y(x) = 0$$
 for all $x \in [a, b]$.

3.
$$y(x) > 0$$
 for all $x \in (a, b)$.

4.
$$y(x)$$
 changes sign on (a, b) .

Question Type: MCQ Question ID: 111686302

Status: Not Answered

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying f(x) = f(x+1) for all $x \in \mathbb{R}$. Then

Options 1 f is not necessarily bounded above.

- 2 there is no $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.
- there exist infinitely many $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.
- there exists a unique $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.

Question Type: MCQ Question ID: 111686303 Status: Answered Chosen Option: 3

Q.4 Let n>1 be an integer. Consider the following two statements for an arbitrary $n\times n$ matrix A with complex entries.

- I. If $A^k = I_n$ for some integer $k \ge 1$, then all the eigenvalues of A are k^{th} roots of unity.
- II. If, for some integer $k \geq 1$, all the eigenvalues of A are k^{th} roots of unity, then $A^k = I_n$.

- Options 1. I is FALSE but II is TRUE.
 - 2. both I and II are TRUE.
 - 3. neither I nor II is TRUE.
 - 4. I is TRUE but II is FALSE.

Question Type: MCQ Question ID: 111686310 Status: Answered

Let $0 < \alpha < 1$ be a real number. The number of differentiable functions $y : [0,1] \to [0,\infty)$, having continuous derivative on [0, 1] and satisfying

$$y'(t) = (y(t))^{\alpha}, t \in [0, 1],$$

 $y(0) = 0,$

- Options 1 exactly one.
 - 2. finite but more than two.
 - 3. exactly two.
 - 4 infinite.

Question Type: MCQ Question ID: 111686301 Status: Answered

Chosen Option: 1

Q.6 Let p and t be positive real numbers. Let D_t be the closed disc of radius t centered at (0,0), i.e., $D_t = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le t^2\}$. Define

$$I(p,t) = \iint_{D_t} \frac{dxdy}{(p^2 + x^2 + y^2)^p}.$$

Then $\lim_{t\to\infty} I(p,t)$ is finite

Options

1 only if p > 1.

2. only if p < 1.

3. only if p = 1.

4 for no value of p.

Question Type: MCQ Question ID: 111686305

Status: Answered

Q.7 For every $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be a function. From the given choices, pick the statement that is the negation of

"For every $x \in \mathbb{R}$ and for every real number $\epsilon > 0$, there exists an integer N > 0 such that $\sum_{i=1}^p |f_{N+i}(x)| < \epsilon$ for every integer p > 0."

Options 1.

For every $x \in \mathbb{R}$ and for every real number $\epsilon > 0$, there does not exist any integer N > 0 such that $\sum_{i=1}^{p} |f_{N+i}(x)| < \epsilon$ for every integer p > 0.

2.

For every $x \in \mathbb{R}$ and for every real number $\epsilon > 0$, there exists an integer N > 0 such that $\sum_{i=1}^p |f_{N+i}(x)| \ge \epsilon$ for some integer p > 0.

3.

There exists $x \in \mathbb{R}$ and there exists a real number $\epsilon > 0$ such that for every integer N > 0 and for every integer p > 0 the inequality $\sum_{i=1}^p |f_{N+i}(x)| \ge \epsilon$ holds.

4.

There exists $x \in \mathbb{R}$ and there exists a real number $\epsilon > 0$ such that for every integer N > 0, there exists an integer p > 0 for which the inequality $\sum_{i=1}^p |f_{N+i}(x)| \ge \epsilon$ holds.

Question Type : MCQ
Question ID : 111686307
Status : Not Answered

Chosen Option: --

Q.8 For an integer $k \ge 0$, let P_k denote the vector space of all real polynomials in one variable of degree less than or equal to k. Define a linear transformation $T: P_2 \longrightarrow P_3$ by

$$Tf(x) = f''(x) + xf(x).$$

Which one of the following polynomials is not in the range of T?

Options

1.
$$x^2 + x^3 + 2$$

2.
$$x + x^3 + 2$$

3.
$$x + 1$$

4.
$$x + x^2$$

Question Type: MCQ

Question ID: 111686309

Status: Answered

0.9

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$,

$$\int_0^1 f(xt) dt = 0. \tag{*}$$

Then

Options 1.

there is an f satisfying (*) that takes both positive and negative values.

- 2. f must be identically 0 on the whole of \mathbb{R} .
- there is an f satisfying (*) that is 0 at infinitely many points, but is not identically zero.
- 4. there is an f satisfying (*) that is identically 0 on (0,1) but not identically 0 on the whole of \mathbb{R} .

Question Type : MCQ Question ID : 111686304 Status : Not Answered

Chosen Option : --

Q.10

How many elements of the group \mathbb{Z}_{50} have order 10?

Options 1. 8

- 2. 10
- 3. 4
- 4. 5

Question Type : MCQ

Question ID : 111686306 Status : Answered

Let G be a finite abelian group of odd order. Consider the following two statements:

I. The map $f: G \to G$ defined by $f(g) = g^2$ is a group isomorphism.

II. The product $\prod_{g \in G} g = e$.

Options

1. Both I and II are TRUE.

2. II is TRUE but I is FALSE.

3. Neither I nor II is TRUE.

⁴ I is TRUE but II is FALSE.

Question Type: MCQ Question ID: 111686328 Status: Answered

Chosen Option: 1

Q.12 Let $f: \mathbb{N} \to \mathbb{N}$ be a bijective map such that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^2} < +\infty.$$

The number of such bijective maps is

Options 1. finite but more than one.

2. zero.

3. exactly one.

4. infinite.

Question Type: MCQ Question ID: 111686315

Status: Answered

Let y be the solution of

$$(1+x)y''(x) + y'(x) - \frac{1}{1+x}y(x) = 0, \ x \in (-1, \infty),$$
$$y(0) = 1, \ y'(0) = 0.$$

Then

- Options 1. y attains its minimum at x = 0.
 - 2. y is bounded on $(0, \infty)$.
 - 3. y is bounded on (-1,0].
 - 4. $y(x) \ge 2$ on $(-1, \infty)$.

Question Type : MCQ Question ID: 111686312 Status: Not Answered

Chosen Option: --

Let $n \geq 2$ be an integer. Let $A: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be the linear transformation defined by

$$A(z_1, z_2, \dots, z_n) = (z_n, z_1, z_2, \dots, z_{n-1}).$$

Which one of the following statements is true for every $n \ge 2$?

- Options 1. A is singular.
 - 2. A is nilpotent.
 - 3. All eigenvalues of A are of modulus 1.
 - 4. Every eigenvalue of A is either 0 or 1.

Question Type: MCQ

Question ID: 111686329

Status: Answered

Let $f:[0,1]\to[0,\infty)$ be a continuous function such that

$$(f(t))^2 < 1 + 2 \int_0^t f(s) ds$$
, for all $t \in [0, 1]$.

Then

Options 1.
$$f(t) < 1 + \frac{t}{2}$$
 for all $t \in [0,1]$.

- 2. f(t) < 1 + t for all $t \in [0, 1]$.
- 3. f(t) > 1 + t for all $t \in [0, 1]$.
- 4. f(t) = 1 + t for all $t \in [0, 1]$.

Question Type: MCQ Question ID: 111686321 Status: Not Answered

Chosen Option: --

Let $M_n(\mathbb{R})$ be the real vector space of all $n \times n$ matrices with real entries, $n \geq 2$. Let $A \in M_n(\mathbb{R})$. Consider the subspace W of $M_n(\mathbb{R})$ spanned by $\{I_n, A, A^2, \ldots\}$. Then the dimension of W over \mathbb{R} is necessarily

Options 1. n^2 .

- 2. ∞.
- 3. n.
- 4. at most n.

Question Type: MCQ

Question ID: 111686311

Status: Answered

Chosen Option: 2

Consider the family of curves $x^2 - y^2 = ky$ with parameter $k \in \mathbb{R}$. The equation of the orthogonal trajectory to this family passing through (1, 1) is given by

Options 1.
$$x^3 + 3xy^2 = 4$$
.

$$2. y^2 + 2x^2y = 3.$$

$$^{3.}x^{3} + 2xy^{2} = 3.$$

4.
$$x^2 + 2xy = 3$$
.

Question Type: MCQ

Question ID: 111686319

Status: Answered

Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that for all $a, b \in \mathbb{R}$ with a < b,

$$\frac{f(b) - f(a)}{b - a} = f'\left(\frac{a + b}{2}\right).$$

Then

Options 1. f must be a linear polynomial.

 2 f is not a polynomial.

f must be a polynomial of degree less than or equal to 2.

4 f must be a polynomial of degree greater than 2.

Question Type: MCQ Question ID: 111686317 Status: Not Answered

Chosen Option: --

Q.19

Let y be a twice differentiable function on \mathbb{R} satisfying

$$y''(x) = 2 + e^{-|x|}, x \in \mathbb{R},$$

 $y(0) = -1, y'(0) = 0.$

Then

Options 1.

there exists an $x_0 \in \mathbb{R}$ such that $y(x_0) \ge y(x)$ for all $x \in \mathbb{R}$.

2. y = 0 has exactly one root.

3. y = 0 has more than two roots.

4. y = 0 has exactly two roots.

Question Type: MCQ Question ID: 111686325 Status: Not Answered

$$S = \lim_{n \to \infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right).$$

Then

Options 1.
$$S=1/2$$
.

2.
$$S = 1$$
.

3.
$$S = 3/4$$
.

4.
$$S = 1/4$$
.

Question Type: MCQ Question ID: 111686316 Status: Answered

Chosen Option: 1

Q.21 Which one of the following statements is true?

Options 1. $(\mathbb{Q}/\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q}/2\mathbb{Z},+)$.

- ^{2.} $(\mathbb{Z}, +)$ is isomorphic to $(\mathbb{R}, +)$.
- 3. $(\mathbb{Q}/\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$.
- 4. $(\mathbb{Z}, +)$ is isomorphic to $(\mathbb{Q}, +)$.

Question Type: MCQ

Question ID: 111686324

Status: Answered

- Q.22 Consider the following statements.
 - I. The group $(\mathbb{Q}, +)$ has no proper subgroup of finite index.
 - II. The group $(\mathbb{C} \setminus \{0\}, \cdot)$ has no proper subgroup of finite index.

Which one of the following statements is true?

- Options

 1. I is TRUE but II is FALSE.
 - 2. Both I and II are TRUE.
 - 3. Neither I nor II is TRUE.
 - 4. II is TRUE but I is FALSE.

Question Type: MCQ Question ID: 111686314

Status : Not Attempted and Marked For Review

Chosen Option: --

Q.23 Let g be an element of S_7 such that g commutes with the element (2,6,4,3). The number of such g is

Options

- 1. 24.
- 2. 6.
- 3. 48.
- 4. 4.

Question Type : MCQ

Question ID: 111686327

Status: Answered

Let A be an $n \times n$ invertible matrix and C be an $n \times n$ nilpotent matrix. If $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ is a $2n \times 2n$ matrix (each X_{ij} being $n \times n$) that commutes with the $2n \times 2n$ matrix $B = \begin{pmatrix} A & 0 \end{pmatrix}$

- Options 1. X_{11} and X_{22} are necessarily zero matrices.
 - 2. X_{12} and X_{21} are necessarily zero matrices.
 - 3. X_{12} and X_{22} are necessarily zero matrices.
 - 4 X_{11} and X_{21} are necessarily zero matrices.

Question Type: MCQ

Question ID: 111686322

Status: Not Answered

Chosen Option: --

Consider the surface $S=\{(x,y,xy)\in\mathbb{R}^3: x^2+y^2\leq 1\}$. Let $\vec{F}=y\hat{i}+x\hat{j}+\hat{k}$. If \hat{n} is the continuous unit normal field to the surface S with positive z-component, then

$$\iint_{S} \vec{F} \cdot \hat{n} \, dS$$

equals

Options 1. π .

- 2. 2π .
- 3. $\frac{\pi}{4}$.
- 4. $\frac{\pi}{2}$.

Question Type: MCQ

Question ID: 111686313

Status: Answered

Q.26

Which one of the following statements is true?

Options 1. Any abelian subgroup of S_5 is trivial.

Exactly half of the elements in any even order subgroup of S_5 must be even permutations.

- ³ There exists a normal subgroup of S_5 of index 7.
- 4. There exists a cyclic subgroup of S_5 of order 6.

Question Type: MCQ Question ID: 111686320 Status: Answered

Chosen Option: 4

Consider the two series

I.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+(1/n)}}$$
 and II. $\sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1/n}}}$.

Which one of the following holds?

- Options
 1. I converges and II diverges.
 - 2. Both I and II converge.
 - 3. Both I and II diverge.
 - 4. I diverges and II converges.

Question Type: MCQ

Question ID: 111686330

Status: Answered

Let $D \subseteq \mathbb{R}^2$ be defined by $D = \mathbb{R}^2 \setminus \{(x,0) : x \in \mathbb{R}\}$. Consider the function $f: D \to \mathbb{R}$ defined by

$$f(x,y) = x \sin \frac{1}{y}.$$

Then

Options 1.

f is a continuous function on D and cannot be extended continuously to any point outside D.

f is a continuous function on D and can be extended continuously to the whole of \mathbb{R}^2 .

f is a continuous function on D and can be extended continuously to $D \cup \{(0,0)\}$.

4. f is a discontinuous function on D.

Question Type: MCQ Question ID: 111686323 Status: Not Answered

Chosen Option: --

Let $f:[0,1]\to [0,1]$ be a non-constant continuous function such that $f\circ f=f$. Define

$$E_f = \{x \in [0,1] : f(x) = x\}.$$

Then

Options 1. E_f need not be an interval.

- ². E_f is an interval.
- 3. E_f is neither open nor closed.
- 4. E_f is empty.

Question Type: MCQ

Question ID: 111686326

Status: Answered

Q.30 Consider the function

$$f(x) = \left\{ \begin{array}{cc} 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cup \{0\}, \\ 1 - \frac{1}{p} & \text{if } x = \frac{n}{p}, \, n \in \mathbb{Z} \setminus \{0\}, \, p \in \mathbb{N} \text{ and } \gcd(n,p) = 1. \end{array} \right.$$

Then

- Options 1 f is continuous at all $x \in \mathbb{Q}$.
 - 2. all $x \in \mathbb{Q} \setminus \{0\}$ are strict local minima for f.
 - 3. f is not continuous at all $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - 4. f is not continuous at x = 0.

Question Type: MCQ Question ID: 111686318

Status: Answered

Chosen Option: 2

Section: Section B

Consider the two functions f(x,y) = x + y and g(x,y) = xy - 16 defined on \mathbb{R}^2 . Then

the function g has no global extreme value subject to the condition f = 0.

the function f attains global extreme values at (4,4) and (-4,-4) subject to the condition

the function g has a global extreme value at (0,0) subject to the condition f=0.

the function f has no global extreme value subject to the condition g = 0.

Question Type: MSQ Question ID: 111686334

Status: Answered

Let V be a finite dimensional vector space and $T:V\to V$ be a linear transformation. Let $\mathcal{R}(T)$ denote the range of T and $\mathcal{N}(T)$ denote the null space $\{v \in V : Tv = 0\}$ of T. If $rank(T) = rank(T^2)$, then which of the following is/are necessarily true?

Options 1.
$$\mathcal{N}(T) = \mathcal{N}(T^2)$$
 .

2.
$$\mathcal{N}(T) = \{0\}.$$

3.
$$\mathcal{R}(T) = \mathcal{R}(T^2)$$
.

4
$$\mathcal{N}(T) \cap \mathcal{R}(T) = \{0\}.$$

Question Type: MSQ

Question ID: 111686339

Status: Answered

Chosen Option: 1,4

Q.3 Consider the four functions from \mathbb{R} to \mathbb{R} :

$$f_1(x) = x^4 + 3x^3 + 7x + 1$$
, $f_2(x) = x^3 + 3x^2 + 4x$, $f_3(x) = \arctan(x)$

and

$$f_4(x) = \begin{cases} x & \text{if } x \notin \mathbb{Z}, \\ 0 & \text{if } x \in \mathbb{Z}. \end{cases}$$

Which of the following subsets of \mathbb{R} are open?

- Options 1. The range of f_4 .
 - 2. The range of f_2 .
 - 3. The range of f_3 .
 - 4. The range of f_1 .

Question Type: MSQ

Question ID: 111686338

Status: Answered

Consider the equation

$$x^{2021} + x^{2020} + \dots + x - 1 = 0.$$

Then

- Options

 1. exactly one real root is negative.
 - 2 exactly one real root is positive.
 - 3. all real roots are positive.
 - 4 no real root is positive.

Question Type: MSQ Question ID: 111686332 Status: Answered Chosen Option: 2,3

Q.5 Let $f:(a,b)\to\mathbb{R}$ be a differentiable function on (a,b). Which of the following statements is/are true?

Options 1.

If $f'(x_0) > 0$ for some $x_0 \in (a, b)$, then f is increasing in a neighbourhood of x_0 .

- 2. f' > 0 in (a, b) implies that f is increasing in (a, b).
- 3. f is increasing in (a, b) implies that f' > 0 in (a, b).

If $f'(x_0) > 0$ for some $x_0 \in (a, b)$, then there exists a $\delta > 0$ such that $f(x) > f(x_0)$ for all $x \in (x_0, x_0 + \delta)$.

> Question Type: MSQ Question ID: 111686335 Status: Answered Chosen Option: 1,2,4

Let m > 1 and n > 1 be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_1 , the equation $Ax = b_1$ has infinitely many solutions. Let b_2 denote an $m \times 1$ matrix different from b_1 . Then $Ax = b_2$ has

- options 1. infinitely many solutions for some b_2 .
 - 2. finitely many solutions for some b_2 .
 - 3. a unique solution for some b_2 .
 - 4. no solution for some b_2 .

Question Type: MSQ Question ID: 111686340 Status: Answered Chosen Option: 1,4

Q.7 Which of the following subsets of \mathbb{R} is/are connected?

- Options

 1. The set $\{x \in \mathbb{R} : x^3 2x + 1 \ge 0\}$.
 - 2. The set $\{x \in \mathbb{R} : x^3 1 \ge 0\}$.
 - 3. The set $\{x \in \mathbb{R} : x^3 + x + 1 \ge 0\}$.
 - 4. The set $\{x \in \mathbb{R} : x \text{ is irrational}\}.$

Question Type: MSQ Question ID: 111686337 Status: Answered

Let $f: \mathbb{R} \to \mathbb{R}$ be a function with the property that for every $y \in \mathbb{R}$, the value of the expression

$$\sup_{x \in \mathbb{R}} \left[xy - f(x) \right]$$

is finite. Define $g(y) = \sup_{x \in \mathbb{R}} [xy - f(x)]$ for $y \in \mathbb{R}$. Then

Options

1.
$$f$$
 must satisfy $\lim_{|x| \to \infty} \frac{f(x)}{|x|} = +\infty$.

- 2. g is even if f is even.
- 3. g is odd if f is even.
- 4. f must satisfy $\lim_{|x| \to \infty} \frac{f(x)}{|x|} = -\infty$.

Question Type: MSQ Question ID: 111686331 Status: Answered Chosen Option: 1,2

Q.9 Let G be a finite group of order 28. Assume that G contains a subgroup of order 7. Which of the following statements is/are true?

- Options 1. G contains at least two subgroups of order 7.
 - 2. G contains a normal subgroup of order 7.
 - ${\it 3.}$ G contains no normal subgroup of order ${\it 7.}$
 - 4. G contains a unique subgroup of order 7.

Question Type: MSQ Question ID: 111686336 Status: Answered Chosen Option: 2,4

Q.10 Let $D = \mathbb{R}^2 \setminus \{(0,0)\}$. Consider the two functions $u,v:D \to \mathbb{R}$ defined by

$$u(x, y) = x^2 - y^2$$
 and $v(x, y) = xy$.

Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then

Options

- ¹ ∇u and ∇v are parallel at each point (x, y) of D.
- ² ∇u and ∇v do not exist at some points (x, y) of D.
- 3. ∇u and ∇v at each point (x, y) of D span \mathbb{R}^2 .

4.

 ∇u and ∇v are perpendicular at each point (x, y) of D.

Question Type : MSQ Question ID : 111686333 Status : Answered Chosen Option : 3,4

Section: Section C

Q.1 Let V be the real vector space of all continuous functions $f:[0,2]\to\mathbb{R}$ such that the restriction of f to the interval [0,1] is a polynomial of degree less than or equal to 2, the restriction of f to the interval [1,2] is a polynomial of degree less than or equal to 3 and f(0)=0. Then the dimension of V is equal to _____.

Given 1 Answer:

Question Type : **NAT**Question ID : **111686346**Status : **Answered**

Q.2 Let $y:\left(\frac{9}{10},3\right)\to\mathbb{R}$ be a differentiable function satisfying

$$(x-2y)\frac{dy}{dx} + (2x+y) = 0, \quad x \in \left(\frac{9}{10}, 3\right), \quad \text{ and } y(1) = 1.$$

Then y(2) equals _____.

Given 3 Answer:

Question Type : **NAT**Question ID : **111686348**Status : **Answered**

The number of cycles of length 4 in S_6 is _____.

Given 90 Answer:

Question Type : **NAT**Question ID : **111686341**Status : **Answered**

Q.4 The value of

$$\frac{\pi}{2} \lim_{n \to \infty} \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{8}\right) \cdots \cos\left(\frac{\pi}{2^{n+1}}\right)$$

is ____.

Given **0.5** Answer :

Question Type : **NAT**Question ID : **111686350**Status : **Answered**

Q.5 Let $\vec{F} = (y+1)e^y\cos(x)\hat{i} + (y+2)e^y\sin(x)\hat{j}$ be a vector field in \mathbb{R}^2 and C be a continuously differentiable path with the starting point (0,1) and the end point $(\frac{\pi}{2},0)$. Then

$$\int_C \vec{F} \cdot d\vec{r}$$

equals _____.

Given 1

Answer:

Question Type : **NAT**Question ID : **111686349**Status : **Answered**

Q.6 Consider the subset $S = \{(x, y) : x^2 + y^2 > 0\}$ of \mathbb{R}^2 . Let

$$P(x,y) = \frac{y}{x^2 + y^2}$$
 and $Q(x,y) = -\frac{x}{x^2 + y^2}$

for $(x,y) \in S$. If C denotes the unit circle traversed in the counter-clockwise direction, then the value of

$$\frac{1}{\pi} \int_C (Pdx + Qdy)$$

is

Given -2 Answer:

Question Type : **NAT**Question ID : **111686344**Status : **Answered**

Q.7

The value of

$$\lim_{n\to\infty} \left(3^n + 5^n + 7^n\right)^{\frac{1}{n}}$$

is ____.

Given **7** Answer :

Question Type : **NAT**Question ID : **111686342**Status : **Answered**

Q.8 Consider the set $A = \{a \in \mathbb{R} : x^2 = a(a+1)(a+2) \text{ has a real root } \}$. The number of connected components of A is _____.

Given 1 Answer:

Question Type : **NAT**Question ID : **111686345**Status : **Answered**

Q.9 The number of group homomorphisms from the group \mathbb{Z}_4 to the group S_3 is _____.

Given **6** Answer :

Question Type : **NAT**Question ID : **111686347**Status : **Answered**

Q.10 Let $B=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2\leq 1\}$ and define $u(x,y,z)=\sin\left((1-x^2-y^2-z^2)^2\right)$ for $(x,y,z)\in B$. Then the value of

$$\iiint_{B} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) dx dy dz$$

is

Given **0** Answer :

Question Type : NAT
Question ID : 111686343
Status : Answered

Q.11 The least possible value of k, accurate up to two decimal places, for which the following problem

$$y''(t) + 2y'(t) + ky(t) = 0, t \in \mathbb{R},$$

$$y(0) = 0, y(1) = 0, y(1/2) = 1,$$

has a solution is _____.

Given **0.56** Answer:

Question Type : NAT
Question ID : 111686352
Status : Answered

Q.12 Let S be the surface defined by

$$\{(x,y,z)\in\mathbb{R}^3: z=1-x^2-y^2,\ z\geq 0\}.$$

Let $\vec{F} = -y\hat{i} + (x-1)\hat{j} + z^2\hat{k}$ and \hat{n} be the continuous unit normal field to the surface S with positive z-component. Then the value of

$$\frac{1}{\pi} \iint_{S} \left(\nabla \times \vec{F} \right) \cdot \hat{n} \, dS$$

is

Given **0** Answer :

Question Type : NAT
Question ID : 111686358
Status : Answered

Q.13 Define the sequence

$$s_n = \begin{cases} \frac{1}{2^n} \sum_{j=0}^{n-2} 2^{2j} & \text{if } n > 0 \text{ is even,} \\ \\ \frac{1}{2^n} \sum_{j=0}^{n-1} 2^{2j} & \text{if } n > 0 \text{ is odd.} \end{cases}$$

Define $\sigma_m = \frac{1}{m} \sum_{n=1}^m s_n$. The number of limit points of the sequence $\{\sigma_m\}$ is _____.

Given 1 Answer:

Question Type : **NAT**Question ID : **111686355**Status : **Answered**

Q.14	The value of
	$\lim_{n\to\infty} \int_0^1 e^{x^2} \sin(nx) dx$
	is
Given Answer:	
	Question Type : NAT Question ID : 111686357 Status : Answered
Q.15	Consider those continuous functions $f: \mathbb{R} \to \mathbb{R}$ that have the property that given any $x \in \mathbb{R}$,
	$f(x) \in \mathbb{Q}$ if and only if $f(x+1) \in \mathbb{R} \setminus \mathbb{Q}$.
	The number of such functions is
Given Answer:	
	Question Type : NAT
	Question ID : 111686353 Status : Answered
	Status : Aliswereu
Q.16	The number of elements of order two in the group S_4 is equal to
Given Answer	
	Question Type : NAT
	Question ID : 111686351 Status : Answered
Q.17	The determinant of the matrix
	(2021 2020 2020 2020)
	2021 2021 2020 2020
	2021 2021 2020
	2021 2021 2021
	is
Given	2021

Given 2021 Answer:

Question Type : NAT
Question ID : 111686356
Status : Answered

Let
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1 \end{pmatrix}$$
. Then the largest eigenvalue of A is _____.

Given 4 Answer:

> Question Type: NAT Question ID: 111686359 Status: Answered

Q.19

The largest positive number a such that

$$\int_{0}^{5} f(x)dx + \int_{0}^{3} f^{-1}(x)dx \ge a$$

for every strictly increasing surjective continuous function $f:[0,\infty)\to [0,\infty)$ is _____.

Given 17 Answer:

> Question Type: NAT Question ID: 111686354 Status: Answered

Q.20

$$\text{Let } A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{. Consider the linear map } T_A \text{ from the real vector space } M_4(\mathbb{R})$$
 to itself defined by $T_A(X) = AX - XA$, for all $X \in M_4(\mathbb{R})$. The dimension of the range of

Given 8 Answer:

> Question Type: NAT Question ID: 111686360 Status: Answered