NATIONAL BOARD FOR HIGHER MATHEMATICS

M. A. and M.Sc. Scholarship Test
September 23, 2006
Time Allowed: 150 Minutes
Maximum Marks: 45

Please read, carefully, the instructions on the following page

INSTRUCTIONS TO CANDIDATES

- Please ensure that this question paper booklet contains 10 numbered (and printed) pages. The reverse of each printed page is blank and can be used for rough work.
- There are three parts to this test: Algebra, Analysis and Geometry. Each part consists of $\mathbf{1 5}$ questions adding up to $\mathbf{4 5}$ questions in all.
- Answer each question, as directed, in the space provided for it in the answer booklet, which is being supplied separately. This question paper is meant to be retained by you and so do not answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or more than one statement may qualify. Write none if none of the statements qualify, or list the labels of all the qualifying statements (amongst (a),(b) and (c)).
- Points will be awarded in the above questions only if all the correct choices are made. There will be no partial credit.
- \mathbb{N} denotes the set of natural numbers, \mathbb{Z} - the integers, \mathbb{Q} - the rationals, \mathbb{R} - the reals and \mathbb{C} - the field of complex numbers. \mathbb{R}^{n} denotes the n dimensional Euclidean space. The symbol $] a, b[$ will stand for the open interval $\{x \in \mathbb{R} \mid a<x<b\}$ while $[a, b]$ will stand for the corresponding closed interval; $[a, b[$ and $] a, b]$ will stand for the corresponding left-closed-right-open and left-open-right-closed intervals respectively. The symbol I will denote the identity matrix of appropriate order.

SECTION 1: ALGEBRA

1.1 Compute $(\sqrt{3}+i)^{14}+(\sqrt{3}-i)^{14}$ (Hint: Use De Moivre's theorem).
1.2 Let $p(x)$ be the polynomial $x^{3}-11 x^{2}+a x-36$, where a is a real number. Assume that it has a positive root which is the product of the other two roots. Find the value of a.
1.3 Identify which of the following groups (if any) is cyclic:
(a) $\mathbb{Z}_{8} \oplus \mathbb{Z}_{8}$
(b) $\mathbb{Z}_{8} \oplus \mathbb{Z}_{9}$
(c) $\mathbb{Z}_{8} \oplus \mathbb{Z}_{10}$.
1.4 In each of the following examples determine the number of homomorphisms between the given groups:
(a) from \mathbb{Z} to \mathbb{Z}_{10};
(b) from \mathbb{Z}_{10} to \mathbb{Z}_{10};
(c) from \mathbb{Z}_{8} to \mathbb{Z}_{10}.
1.5 Let S_{7} be the group of permutations on 7 symbols. Does S_{7} contain an element of order 10? If the answer is "yes", then give an example.
1.6 Let G be a finite group and H be a subgroup of G. Let $O(G)$ and $O(H)$ denote the orders of G and H respectively. Identify which of the following statements are necessarily true.
(a) If $O(G) / O(H)$ is a prime number then H is normal in G.
(b) If $O(G)=2 O(H)$ then H is normal in G.
(c) If there exist normal subgroups A and B of G such that $H=\{a b \mid a \in$ $A, b \in B\}$ then H is normal in G.
1.7 Which of the following statements are true?
(a) There exists a finite field in which the additive group is not cyclic.
(b) If F is a finite field, there exists a polynomial p over F such that $p(x) \neq 0$ for all $x \in F$, where 0 denotes the zero in F.
(c) Every finite field is isomorphic to a subfield of the field of complex numbers.
1.8 Let V be a vector space of dimension 4 over the field \mathbb{Z}_{3} with 3 elements. What is the number of one-dimensional vector subspaces of V ?
1.9 Let V be a vector space of dimension $d<\infty$, over \mathbb{R}. Let U be a vector subspace of V. Let S be a subset of V. Identify which of the following statements is true:
(a) If S is a basis of V then $U \cap S$ is a basis of U.
(b) If $U \cap S$ is a basis of U and $\{s+U \in V / U \mid s \in S\}$ is a basis of V / U then S is a basis of V.
(c) If S is a basis of U as well as V then the dimension of U is d.
1.10 Let $M(n, \mathbb{R})$ be the vector space of $n \times n$ matrices with real entries. Let U be the subset of $M(n, \mathbb{R})$ consisting $\left\{\left(a_{i j}\right) \mid a_{11}+a_{22}+\ldots+a_{n n}=0\right\}$. Is it true that U is a vector subspace of V over \mathbb{R} ? If so what is its dimension?
1.11 Let A be a 3×3 matrix with complex entries, whose eigenvalues are $1, i$ and $-2 i$. If $A^{-1}=a A^{2}+b A+c I$, where I is the identity matrix, with $a, b, c \in \mathbb{C}$, what are the values of a, b and c ?
1.12 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation of \mathbb{R}^{n}, where $n \geq 3$, and let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be the eigenvalues of T. Which of the following statements are true?
(a) If $\lambda_{i}=0$, for some $i=1, \ldots, n$, then T is not surjective.
(b) If T is injective, then $\lambda_{i}=1$ for some $i, 1 \leq i \leq n$.
(c) If there is a 3 -dimensional subspace U of V such that $T(U)=U$, then $\lambda_{i} \in \mathbb{R}$ for some $i, 1 \leq i \leq n$.
1.13 Let $p(x)=a_{0}+a_{1}+\cdots+a_{n} x^{n}$ be the characteristic polynomial of a $n \times n$ matrix A with entries in \mathbb{R}. Then which of the following statements is true?
(a) $p(x)$ has no repeated roots.
(b) $p(x)$ can be expressed as a product of linear polynomials with real coefficients.
(c) If $p(x)$ can be expressed as a product of linear polynomials with real coefficients then there is a basis of \mathbb{R}^{n} consisting of eigenvectors of A.
1.14 Let \mathbb{Z}_{n} be the ring of integers modulo n, where n is an integer ≥ 2. Then complete the following:
(a) If \mathbb{Z}_{n} is a field then n is
(b) If Z_{n} is an integral domain then n is
(c) If there is an injective ring homomorphism of \mathbb{Z}_{5} to \mathbb{Z}_{n} then n is
1.15 Let $C[0,1]$ be the ring of continuous real-valued functions on $[0,1]$, with addition and multiplication defined pointwise. For any subset S of $C[0,1]$ let $Z(S)=\{f \in C[0,1] \mid f(x)=0$ for all $x \in S\}$. Then which of the following statements are true?
(a) If $Z(S)$ is an ideal in $C[0,1]$ then S is closed in $[0,1]$.
(b) If $Z(S)$ is a maximal ideal then S has only one point.
(c) If S has only one point then $Z(S)$ is a maximal ideal.

SECTION 2: ANALYSIS

2.1 Evaluate:

$$
\lim _{\theta \rightarrow \frac{\pi}{2}}(1-5 \cot \theta)^{\tan \theta}
$$

2.2 Evaluate:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n} \cos \left(\frac{\pi k}{2 n}\right)
$$

2.3 Let $x>0$. Define

$$
f(x)=\int_{0}^{x} \frac{\sin x y}{y} d y
$$

Evaluate $f^{\prime}(x)$ as a function of x.
2.4 What is the relation between the height h and the radius r of a right circular cylinder of fixed volume V and minimal total surface area?
2.5 Find the coefficient of x^{7} in the Taylor series expansion of the function $f(x)=\sin ^{-1} x$ around 0 in the interval $-1<x<1$.
2.6 Find the minimum value of the function:

$$
f(x, y)=x^{2}+5 y^{2}-6 x+10 y+6
$$

2.7 Find the interval of convergence of the series:

$$
(x+1)-\frac{(x+1)^{2}}{4}+\frac{(x+1)^{3}}{9}-\frac{(x+1)^{4}}{16}+\ldots
$$

2.8 For what values of p does the following series converge?

$$
1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\ldots
$$

2.9 Pick out the series which are absolutely convergent:
(a)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n \alpha}{n^{2}}
$$

where $\alpha \in \mathbb{R}$ is a fixed real number.
(b)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n \log n}{e^{n}}
$$

(c)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}
$$

2.10 Pick out the functions which are continuous at least at one point in the real line:
(a)

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } x & \text { is rational, } \\
0 & \text { if } & x
\end{array}\right. \text { is irrational. }
$$

(b)

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } x \text { is rational, } \\
0 & \text { if } x \text { is irrational. }
\end{array}\right.
$$

(c)

$$
f(x)= \begin{cases}\sin \pi x & \text { if } x \text { is rational, } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

2.11 Pick out the functions which are uniformly continuous:
(a)

$$
\left.f(x)=\frac{1}{x}, x \in\right] 0,1[
$$

(b)

$$
\left.f(x)=\frac{\sin x}{x}, x \in\right] 0,1[.
$$

(c)

$$
f(x)=\sin ^{2} x, x \in \mathbb{R}
$$

2.12 Let $\mathcal{C}^{1}(\mathbb{R})$ denote the set of all continuously differentiable real valued functions defined on the real line. Define

$$
A=\left\{f \in \mathcal{C}^{1}(\mathbb{R})\left|f(0)=0, f(1)=1,\left|f^{\prime}(x)\right| \leq 1 / 2 \text { for all } x \in \mathbb{R}\right\}\right.
$$

where f^{\prime} denotes the derivative of the function f. Pick out the true statement:
(a) A is an empty set.
(b) A is a finite and non-empty set.
(c) A is an infinite set.
2.13 Let $\omega_{i}, 1 \leq i \leq 7$ denote the seventh roots of unity. Evaluate:

$$
\Pi_{i=1}^{7} \omega_{i}
$$

2.14 Pick out the true statements:
(a) $|\sin z| \leq 1$ for all $z \in \mathbb{C}$.
(b) $\sin ^{2} z+\cos ^{2} z=1$ for all $z \in \mathbb{C}$.
(c) $\sin 3 z=3 \sin z-4 \sin ^{3} z$ for all $z \in \mathbb{C}$.
2.15 Evaluate:

$$
\int_{\{|z|=2\}} \frac{d z}{(z-1)^{3}} .
$$

SECTION 3: GEOMETRY

3.1 Write down the equation of the locus of a point which moves in the $x y$ plane so that it is equidistant from the straight lines $y=x$ and $y=-x$.
3.2 What is the shape of the locus of a point which moves in the plane so that it is equidistant from a given point A and a given straight line ℓ (which does not contain the point A)?
3.3 What is the area of a quadrilateral in the $x y$-plane whose vertices are $(0,0),(1,0),(2,3)$ and $(0,1)$?
3.4 What is the surface area of the sphere whose equation is given by

$$
x^{2}+y^{2}+z^{2}-4 x+6 y-2 z+13=0 ?
$$

3.5 What is the number of points of intersection of the curves $\left(x^{2}+y^{2}+1\right)\left(x^{2}+y^{2}-2 x-4 y+1\right)=0$ and $x^{2}+y^{2}-2 x-2 y-2=0 ?$
3.6 The plane $m_{1}(x-1)+m_{2}(y-2)+m_{3}(z-3)=0$ is tangent to the surface $x^{3}+y^{3}-z^{3}+3 x y z=0$ at the point $(1,2,3)$. What are the values of $m_{i}, 1 \leq i \leq 3$ such that $\sum_{i=1}^{3} m_{i}^{2}=1$?
3.7 Find the area enclosed by the circle formed by the intersection of the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z=1$ and the plane $x+y+z=1$.
3.8 Find the lengths of the semi-axes of the ellipse

$$
2 x^{2}+2 x y+2 y^{2}=1
$$

3.9 Let A, B, C and D be the vertices (in clockwise order) of a rectangle in the $x y$-plane. Let $f(x, y)=a x+b y$ for some fixed real numbers a and b. Given that $f(A)=5, f(B)=f(D)=10$, find $f(C)$ (here, if a point $P=(u, v)$, we write $f(P)$ for $f(u, v))$.
3.10 Let $A_{i}=\left(x_{i}, y_{i}\right), 1 \leq i \leq 3$ be the vertices of a triangle in the $x y$ plane. Then, given any point $P=(x, y)$ inside the triangle, we can find three numbers $\lambda_{i}=\lambda_{i}(x, y), 1 \leq i \leq 3$ such that

$$
\begin{gathered}
0 \leq \lambda_{i} \leq 1, \text { for all } 1 \leq i \leq 3 \\
\lambda_{1}+\lambda_{2}+\lambda_{3}=1, \\
x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3} \text { and } y=\lambda_{1} y_{1}+\lambda_{2} y_{2}+\lambda_{3} y_{3}
\end{gathered}
$$

If $A_{1}=(0,0), A_{2}=(1,0)$ and $A_{3}=(0,1)$, write down $\lambda_{i}, 1 \leq i \leq 3$ as functions of x and y.
3.11 Consider the points $A=(0,2)$ and $B=(1,1)$ in the $x y$-plane. Consider all possible paths $A P B$ where P is an arbitrary point on the x-axis and $A P$ and $P B$ are straight line segments. Find the coordinates of the point P such that the length of the path $A P B$ is shortest amongst all such possible paths.
3.12 What curve does the following equation represent in polar coordinates:

$$
\frac{2}{r}=1+\frac{1}{2} \cos \theta ?
$$

3.13 Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$.
3.14 Which of the following equations represent bounded sets in the $x y$ plane?
(a) $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$.
(b) $x y=1$
(c) $17 x^{2}-12 x y+8 y^{2}+46 x-28 y+17=0$.
3.15 Let P_{n} be a regular polygon of n sides inscribed in a circle of radius a, where $a>0$. Let L_{n} and A_{n} be the perimeter and area of P_{n} respectively. Evaluate:

$$
\lim _{n \rightarrow \infty} \frac{L_{n}^{2}}{A_{n}}
$$

