NATIONAL BOARD FOR HIGHER MATHEMATICS
M. A. and M.Sc. Scholarship Test

September 20, 2014
Time Allowed: 150 Minutes
Maximum Marks: 30

Please read, carefully, the instructions on the following page

INSTRUCTIONS TO CANDIDATES

- Please ensure that this question paper booklet contains 7 numbered (and printed) pages. The reverse of each printed page is blank and can be used for rough work.
- There are three parts to this test: Algebra, Analysis and Miscellaneous. Each part consists of $\mathbf{1 0}$ questions adding up to $\mathbf{3 0}$ questions in all.
- Answer each question, as directed, in the space provided for it in the answer booklet, which is being supplied separately. This question paper is meant to be retained by you and so do not answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or one or more than one statement may qualify. Write none if none of the statements qualify, or list the labels of all the qualifying statements (amongst (a),(b) and (c)).
- Points will be awarded in the above questions only if all the correct choices are made. There will be no partial credit.

- Notations

- \mathbb{N} denotes the set of natural numbers $\{1,2,3, \cdots\}, \mathbb{Z}$ - the integers, \mathbb{Q} - the rationals, \mathbb{R} - the reals and \mathbb{C} - the field of complex numbers. \mathbb{R}^{n} denotes the n-dimensional Euclidean space.
- The symbol $] a, b[$ will stand for the open interval $\{x \in \mathbb{R} \mid a<$ $x<b\}$ while $[a, b]$ will stand for the corresponding closed interval; $[a, b[$ and $] a, b]$ will stand for the corresponding left-closed-rightopen and left-open-right-closed intervals respectively.
- We denote by $\mathbb{M}_{n}(\mathbb{R})$ (respectively, $\mathbb{M}_{n}(\mathbb{C})$), the set of all $n \times n$ matrices with entries from \mathbb{R} (respectively, \mathbb{C}).
- The trace of a square matrix A will be denoted $\operatorname{tr}(\mathrm{A})$ and the determinant by $\operatorname{det}(\mathrm{A})$.
- The derivative of a function f will be denoted by f^{\prime} and the second derivative by $f^{\prime \prime}$.
- All logarithms, unless specified otherwise, are to the base e.

- Calculators are not allowed.

Section 1: Algebra

1.1 Find the sign of the permutation σ defined below:

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right)
$$

1.2 Let G be an arbitrary group and let a and b be any two distinct elements of G. Which of the following statements are true?
(a) If m is the order of a and if n is the order of b, then the order of $a b$ is the l.c.m. of m and n.
(b) The order of $a b$ equals the order of $b a$.
(c) The elements $a b$ and $b a$ are conjugate to each other.
1.3 Let G be the group of invertible upper triangular matrices in $\mathbb{M}_{2}(\mathbb{R})$. If we write $A \in G$ as

$$
A=\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right)
$$

which of the following define a normal subgroup of G ?
(a) $H=\left\{A \in G \mid a_{11}=1\right\}$.
(b) $H=\left\{A \in G \mid a_{11}=a_{22}\right\}$.
(c) $H=\left\{A \in G \mid a_{11}=a_{22}=1\right\}$.
1.4 Give an example of an ideal in the ring $\mathcal{C}[0,1]$ of all continuous real valued functions on the interval $[0,1]$ with pointwise addition and pointwise multiplication as the ring operations.
1.5 Which of the following sets of vectors form a basis for \mathbb{R}^{3} ?
(a) $\{(-1,0,0),(1,1,1),(1,2,3)\}$.
(b) $\{(0,1,2),(1,1,1),(1,2,3)\}$.
(c) $\{(-1,1,0),(2,0,0),(0,1,1)\}$.
1.6 Write down a basis for the following subspace of \mathbb{R}^{4} :

$$
V=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid z=x+y, x+y+t=0\right\}
$$

1.7 Let $A \in \mathbb{M}_{2}(\mathbb{R})$. Which of the following statements are true?
(a) If $(\operatorname{tr}(A))^{2}>4 \operatorname{det}(A)$, then A is diagonalizable over \mathbb{R}.
(b) If $(\operatorname{tr}(A))^{2}=4 \operatorname{det}(A)$, then A is diagonalizable over \mathbb{R}.
(c) If $(\operatorname{tr}(A))^{2}<4 \operatorname{det}(A)$, then A is diagonalizable over \mathbb{R}.
1.8 Let V be the vector space of all polynomials in a single variable with real coefficients and of degree less than, or equal to, 3. Equip this space with the standard basis consisting of the elements $1, x, x^{2}$ and x^{3}. Consider the linear transformation $T: V \rightarrow V$ defined by

$$
T(p)(x)=x p^{\prime \prime}(x)+3 x p^{\prime}(x)+2 p(x), \text { for all } p \in V
$$

Write down the corresponding matrix of T with respect to the standard basis.
1.9 With the notations and definitions of Problem 1.8 above, find $p \in V$ such that

$$
x p^{\prime \prime}(x)+3 x p^{\prime}(x)+2 p(x)=11 x^{3}+14 x^{2}+7 x+2 .
$$

1.10 If α, β and γ are the roots of the equation

$$
x^{3}-3 x^{2}+4 x-4=0,
$$

write down an equation of degree 3 whose roots are α^{2}, β^{2} and γ^{2}.

Section 2: Analysis

2.1 Which of the following series are convergent?
(a)

$$
\sum_{n=1}^{\infty} \sqrt{\frac{2 n^{2}+3}{5 n^{3}+1}}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{(n+1)^{n}}{n^{n+\frac{3}{2}}}
$$

(c)

$$
\sum_{n=1}^{\infty} n^{2} x\left(1-x^{2}\right)^{n}, \text { where } 0<x<1
$$

2.2 Evaluate:

$$
\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{n}{n}\right)\right]^{\frac{1}{n}}
$$

2.3 In each of the following, evaluate the limit if the limit exists, or state that the limit does not exist if that is the case.
(a)

$$
\lim _{x \rightarrow 0} \frac{[x]}{x}
$$

(b)

$$
\lim _{x \rightarrow 0} x\left[\frac{1}{x}\right]
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{\cos \left(\frac{\pi}{2} \cos x\right)}{\sin (\sin x)}
$$

(Note: The symbol $[x]$ denotes the greatest integer less than, or equal to, x.)
2.4 In each of the following find the points of continuity of the function f. (a)

$$
f(x)= \begin{cases}0, & \text { if } x \in \mathbb{Q} \\ 1, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

(b)

$$
f(x)= \begin{cases}0, & \text { if } x \in \mathbb{Q} \\ x^{2}-1, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

2.5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x=a$ and let $f(a)>0$. Evaluate:

$$
\lim _{x \rightarrow a}\left(\frac{f(x)}{f(a)}\right)^{\frac{1}{\log x-\log a}}
$$

2.6 Which of the following functions are differentiable at $x=0$?
(a)

$$
f(x)= \begin{cases}\tan ^{-1}\left(\frac{1}{|x|}\right), & \text { if } x \neq 0 \\ \frac{\pi}{2}, & \text { if } x=0\end{cases}
$$

(b)

$$
f(x)=|x|^{\frac{1}{2}} x .
$$

(c)

$$
f(x)= \begin{cases}x^{2}\left|\cos \frac{\pi}{x}\right|, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

2.7 Let $x, y \in] 0, \infty[$. Which of the following statements are true?
(a) $\left|\log \left(1+x^{2}\right)-\log \left(1+y^{2}\right)\right| \leq|x-y|$.
(b) $\left|\sin ^{2} x-\sin ^{2} y\right| \leq|x-y|$.
(c) $\left|\tan ^{-1} x-\tan ^{-1} y\right| \leq|x-y|$.
2.8 For what values of $x \in \mathbb{R}$ is the following function decreasing?

$$
f(x)=2 x^{3}-9 x^{2}+12 x+4 .
$$

2.9 Which of the following statements are true?
(a) If $n \in \mathbb{N}, n>2$, then $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ is rational when n is even.
(b) If $n \in \mathbb{N}, n>2$, then $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ is rational when n is odd.
(c) If $n \in \mathbb{N}, n>2$, then $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ is irrational when n is even.
2.10 A right circular cylinder is inscribed in a sphere of radius $a>0$. What is the height of the cylinder when its volume is maximal?
3.1 Given a function $u: \mathbb{R} \rightarrow \mathbb{R}$, define $u^{+}(x)=\max \{u(x), 0\}$ and $u^{-}(x)=$ $-\min \{u(x), 0\}$. If u_{1} and u_{2} are real valued functions defined on \mathbb{R}, which of the following statements are true?
(a) $\left|u_{1}-u_{2}\right|=\left(u_{1}-u_{2}\right)^{+}+\left(u_{1}-u_{2}\right)^{-}$.
(b) $\max \left\{u_{1}, u_{2}\right\}=\left(u_{1}-u_{2}\right)^{+}+u_{2}$.
(c) $\max \left\{u_{1}, u_{2}\right\}=\left(u_{1}-u_{2}\right)^{-}+u_{1}$.
3.2 Let a_{1}, \cdots, a_{n} be positive real numbers. What is the minimum value of

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}} ?
$$

3.3 Let n be a fixed positive integer. For $0 \leq r \leq n$, let C_{r} denote the usual binomial coefficient $\binom{n}{r}$, viz. the number of ways of choosing r objects from n objects. Evaluate:

$$
\frac{C_{0}}{1}-\frac{C_{1}}{2}+\frac{C_{2}}{3}-\cdots+(-1)^{n} \frac{C_{n}}{n+1} .
$$

3.4 Let $a, b, c \in \mathbb{R}$. Evaluate:

$$
\left|\begin{array}{ccc}
b+c & a & a \\
b & c+a & b \\
c & c & a+b
\end{array}\right|
$$

3.5 Which of the following statements are true?
(a) For every $n \in \mathbb{N}, n^{3}-n$ is divisible by 6 .
(b) For every $n \in \mathbb{N}, n^{7}-n$ is divisible by 42 .
(c) Every perfect square is of the form $3 m$ or $3 m+1$ for some $m \in \mathbb{N}$.
3.6 Find the sum of the following infinite series:

$$
1+\frac{2}{6}+\frac{2.5}{6.12}+\frac{2.5 .8}{6.12 .18}+\cdots
$$

3.7 Find the sum of the following infinite series:

$$
\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\cdots
$$

3.8 Find the sum of the following infinite series:

$$
\frac{1}{3!}+\frac{4}{4!}+\frac{9}{5!}+\cdots
$$

3.9 Find the area of the triangle in the complex plane whose vertices are the points representing the numbers $1, \omega$ and ω^{2}, the cube roots of unity.
3.10 Find the equation of the plane in \mathbb{R}^{3} which passes through the point $(-10,5,4)$ and which is perpendicular to the line joining the points $(4,-1,2)$ and $(-3,2,3)$.

