NATIONAL BOARD FOR HIGHER MATHEMATICS

M. A. and M.Sc. Scholarship Test September 19, 2015 Time Allowed: 150 Minutes Maximum Marks: 30

Please read, carefully, the instructions on the following page

INSTRUCTIONS TO CANDIDATES

- Please ensure that this question paper booklet contains 8 numbered (and printed) pages. The reverse of each printed page is blank and can be used for rough work.
- There are three parts to this test: Algebra, Analysis and Miscellaneous. Each part consists of **10** questions adding up to **30** questions in all.
- Answer each question, as directed, in the space provided for it in the **answer booklet**, which is being supplied separately. This question paper is meant to be retained by you and so do not answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or one or more than one statement may qualify. Write **none** if none of the statements qualify, or list the labels of **all** the qualifying statements (amongst (a),(b) and (c)).
- Points will be awarded in the above questions only if **all** the correct choices are made. There will be no partial credit.
- Notations
 - \mathbb{N} denotes the set of natural numbers $\{1, 2, 3, \cdots\}$, \mathbb{Z} the integers, \mathbb{Q} the rationals, \mathbb{R} the reals and \mathbb{C} the field of complex numbers. \mathbb{R}^n denotes the *n*-dimensional Euclidean space.
 - The symbol \mathbb{Z}_n will denote the ring of integers modulo n.
 - The symbol $\binom{n}{r}$ will denote the standard binomial coefficient giving the number of ways of choosing r objects from a collection of n objects, where $n \ge 1$ and $0 \le r \le n$ are integers.
 - The symbol]a, b[will stand for the open interval $\{x \in \mathbb{R} \mid a < x < b\}$ while [a, b] will stand for the corresponding closed interval; [a, b[and]a, b] will stand for the corresponding left-closed-right-open and left-open-right-closed intervals respectively.
 - We denote by $\mathbb{M}_n(\mathbb{R})$ (respectively, $\mathbb{M}_n(\mathbb{C})$), the set of all $n \times n$ matrices with entries from \mathbb{R} (respectively, \mathbb{C}).
 - The trace of a square matrix A will be denoted tr(A) and the determinant by det(A).
 - The derivative of a function f will be denoted by f' and the second derivative by f''.
 - All logarithms, unless specified otherwise, are to the base e.
- Calculators are not allowed.

Section 1: Algebra

1.1 Which of the following statements are true?

a. If G is a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$, then G is abelian.

b. If G is a group such that $a^2 = e$ for all $a \in G$, where e is the identity element in G, then G is abelian.

c. If G is a group such that $a^2 = e$ for all $a \in G$, where e is the identity element in G, then G is finite.

1.2 For real numbers a and b, define the mapping $\tau_{a,b} : \mathbb{R} \to \mathbb{R}$ by $\tau_{a,b}(x) = ax + b$. Let

$$G = \{\tau_{a,b} : a, b \in \mathbb{R}, a \neq 0\}.$$

Under composition of mappings, this becomes a group. Which of the following subgroups of G are normal?

a. $H = \{ \tau_{a,b} \mid a \neq 0, a \in \mathbb{Q}, b \in \mathbb{R} \}.$ b. $H = \{ \tau_{1,b} \mid b \in \mathbb{R} \}.$ c. $H = \{ \tau_{1,b} \mid b \in \mathbb{Q} \}.$

1.3 Find all positive integers n > 1 such that the polynomial $x^4 + 3x^3 + x^2 + 6x + 10$ belongs to the ideal generated by the polynomial $x^2 + x + 1$ in $\mathbb{Z}_n[x]$.

1.4 Find the number of irreducible monic polynomials of degree 2 over the field \mathbb{F}_5 of five elements.

1.5 Find the number of invertible 2×2 matrices with entries in \mathbb{F}_2 , the field of two elements.

1.6 Let V be a finite dimensional vector space and let A, B and C be subspaces of V. Which of the following statements are true?

a. $A \cap (B+C) = A \cap B + A \cap C$. b. $A \cap (B+C) \subset A \cap B + A \cap C$. c. $A \cap (B+C) \supset A \cap B + A \cap C$.

1.7 Write down the inverse of the following matrix:

1.8 Find an orthogonal matrix P such that $PAP^{-1} = B$, where

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

1.9 Let $A = (a_{ij}) \in \mathbb{M}_n(\mathbb{R})$, where

$$a_{ij} = \begin{cases} 1 & \text{if } i+j=n+1, \\ 0 & \text{otherwise.} \end{cases}$$

What is the value of det(A) when (i) n = 10 and (ii) n = 100?

1.10 Let n > 1 be a positive integer and let $A \in M_n(\mathbb{R})$ be as defined in Problem 1.9 above. Write down the set of eigenvalues of A.

Section 2: Analysis

2.1 In each of the following cases, state whether the given series is absolutely convergent, conditionally convergent or divergent.a.

$$1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \cdots$$

b.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}.$$

c.

$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n(n-1)}.$$

2.2 Evaluate:

$$\lim_{\theta \to 0} (1 - 2\tan\theta)^{\cot\theta}.$$

2.3 Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Let $t \in \mathbb{R}$. Evaluate:

$$\lim_{h \to 0} \frac{1}{h} \int_{t-h}^{t+h} f(s) \ ds.$$

2.4 Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^n \frac{n}{n^2 + k^2}.$$

2.5 Define:

$$f(x) = \begin{cases} a_n + \sin \pi x & \text{if } x \in [2n, 2n+1], \\ b_n + \cos \pi x & \text{if } x \in]2n-1, 2n[, \end{cases}$$

where n varies over $\mathbb{N} \cup \{0\}$. Find all possible sequences $\{a_n\}$ and $\{b_n\}$ such that f is continuous on $[0, \infty[$.

2.6 Which of the following functions are uniformly continuous on the prescribed domain?

a. $f(x) = x \sin \frac{1}{x}$ on]0, 1[. b. $f(x) = e^x \cos \frac{1}{x}$ on]0, 1[. c. $f(x) = \sin(\sin x)$ on]0, ∞ [.

2.7 Let k be a positive integer. Let a > 0. Evaluate:

$$\lim_{n \to \infty} \frac{(a + \frac{1}{n})^n (a + \frac{2}{n})^n \cdots (a + \frac{k}{n})^n}{a^{nk}}.$$

2.8 Which of the following functions defined on R are differentiable?
a. f(x) = x|x|.
b. f(x) = [x] sin² πx.
c. f(x) = √|x|.
(The symbol [x] in statement (b) stands for the integral part of x ∈ R, *i.e.* the largest integer less than, or equal to, x.)

2.9 Which of the following statements are true?

a. Let f be continuously differentiable in [a, b] and twice differentiable on [a, b[. If f(a) = f(b) and if f'(a) = 0, then there exists $x_0 \in]a, b[$ such that $f''(x_0) = 0$.

b. Let f be continuously differentiable in [a, b]. If f(a) = f(b) and if f'(a) = f'(b), then there exists x_1 and x_2 in]a, b[such that $x_1 \neq x_2$ and such that $f'(x_1) = f'(x_2)$.

c. Let f be continuously differentiable on [0, 2], and twice differentiable on [0, 2[. If f(0) = 0, f(1) = 1 and f(2) = 2, then there exists $x_0 \in]0, 2[$ such that $f''(x_0) = 0$.

2.10 Let Γ be the boundary of the square in the complex plane with vertices at the points 0, 1, 1+i and i, which is described in the anticlockwise direction. Evaluate:

$$\int_{\Gamma} \pi e^{\pi \overline{z}} dz.$$

Section 3: Miscellaneous

3.1 Which of the following relations are true? a. $(-1)^{\frac{n(n-1)}{2}} = (-1)^{\frac{n(n+1)}{2}}$. b. $(-1)^{\frac{n(n-1)}{2}} = (-1)^{[\frac{n}{2}]}$. c. $(-1)^{\frac{n(n-1)}{2}} = (-1)^{n^2}$.

(The symbol $[\frac{n}{2}]$ in statement (b) stands for the integral part of $\frac{n}{2}$; see also Problem 2.8.)

3.2 Let n, k and r be positive integers such that k < r < n and also such that n > r + k. Which of the following statements are true? a.

$$\binom{n}{r} = \frac{n}{r} \binom{n-1}{r-1}.$$

b.

$$\binom{n}{r} = \sum_{l=0}^{k} \binom{k}{l} \binom{n-k}{r-l}.$$

c.

$$\binom{n}{r} = \sum_{l=0}^{k} \binom{k}{l} \binom{n-l}{r-k}.$$

3.3 Let $a, b, c \in \mathbb{R}$. Evaluate the determinant:

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}.$$

3.4 Find the sum of the following series up to n terms:

$$\frac{1}{2.3}2 + \frac{2}{3.4}2^2 + \frac{3}{4.5}2^3 + \cdots$$

3.5 Let N = 7776. Find the number of divisors of N, excluding 1 and N.

3.6 Let P_n be the polygon in the complex plane with vertices situated at the *n*-th roots of unity. Let A_n be its area and let L_n be its perimeter. Evaluate:

$$\lim_{n \to \infty} \frac{L_n^2}{A_n}.$$

3.7 Let $a, b \in \mathbb{R}$. For $P = (x, y) \in \mathbb{R}^2$, define f(P) = ax + by. The line ax + by = 4 intersects the line segment joining two points P_1 and P_2 in the plane at a point R such that $P_1R : RP_2 = 1 : 2$. If $f(P_1) = 3$, what is the value of $f(P_2)$?

3.8 Let $n \in \mathbb{N}$. Which of the following statements are true? a. $x^n - 1 \ge n(x-1)x^{\frac{n-1}{2}}$ for all $x \ge 0$. b. $x^n - 1 \ge n(x-1)x^{\frac{n-1}{2}}$ for all $x \ge 1$. c. $x^n - 1 \ge n(x-1)x^{\frac{n-1}{2}}$ for all $x \ge n$. **3.9** What is the radius of the sphere with centre at the origin and which has the plane x + y + z = 1 as a tangent?

3.10 Let

$$S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 2hxy + y^2 = 1\}.$$

For what values of h is the set S non-empty and bounded?