KEY

Section 1: Algebra

$1.1 \pm i / \sqrt{3} ;(1 \pm i \sqrt{15}) / 4$
1.2 b
$1.3(1 / 2,-1 / 2,-1 / 2,-1 / 2)$
$1.4 \mathrm{a}, \mathrm{c}$
1.5 b,c
1.6 a
1.7 Any two linearly independent vectors satisfying the linear system
1.8

$$
\left[\begin{array}{rrrr}
1 & 1 & -1 & -5 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

1.9 a
$1.10 \mathrm{a}, \mathrm{c}$

Section 2: Analysis

$2.1 e^{6}$
2.2 (a) convergent; (b) convergent
$2.3 \frac{1}{2}\left(4^{\frac{1}{3}}-1\right)$
2.4 (a) discontinuous at $x=\sqrt{n}, n \in \mathbb{N}, n \neq$ k^{2}; (b) continuous everywhere
$2.5 \mathrm{~b}, \mathrm{c}$
2.6

$$
\frac{n e^{(n+2) x}-(n+1) e^{(n+1) x}+e^{x}}{\left(e^{x}-1\right)^{2}}
$$

2.7 (a) $a^{n} f^{\prime}(a)-n a^{n-1} f(a)$; (b) $\frac{k(k+1)}{2} f^{\prime}(a)$
$2.8 i, \frac{ \pm \sqrt{3}-i}{2}$
$2.9-4+2 \pi i$
2.10 (a) $f^{\prime}(x+i x)=2 x ;$ (b) $f^{\prime}(0)=0$

Section 3: Geometry

$3.1 \frac{1}{4} d \sqrt{k^{2}-d^{2}}$
3.2 $P=(2 / 3,0), Q=(4 / 3,1)$
3.3 Radius $=\frac{L}{4 N \sin \frac{\pi}{2 N}}$, Area $=\frac{L^{2}}{8 N \tan \frac{\pi}{2 N}}$
$3.4 \mathrm{ad} / 2$
3.5 b,c
$3.6 x=\theta-\sin \theta ; y=1-\cos \theta$
$3.7 \frac{2}{7}, \frac{3}{7}, \frac{6}{7}$
$3.83 x-2 y-7 z=0$
$3.99 x-2 y-5 z+4=0$
$3.10 \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
Note: Please accept any answer which is correct, but expressed in an equivalent, though different, form, where applicable.

