DIFFERENTIAL EQUATIONS

JUNE - 2014

PART - B

The initial value problem

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x \text{ , } 0 \le x \le 1, \ t > 0 \text{ and } u(x,0) =$$

- 1. a unique solution u(x,t) which $\rightarrow \infty$ as $t \rightarrow \infty$.
- 2. more than one solution.
- 3. a solution which remains bounded as $t \to \infty$
- 4. no solution.
- Let $Y_1(x)$ and $Y_2(x)$ defined on [0,1] be twice continuously differentiable functions satisfying Y''(x) + Y'(x) + Y(x) = 0. Let W(x) be the

Wronskian of Y₁ and Y₂ and satisfy $W\left(\frac{1}{2}\right) = 0$.

- 1. W(x) = 0 for $x \in [0, 1]$
- 2. $W(x) \neq 0$ for $x \in [0, 1/2) \cup (\frac{1}{2}, 1]$
- 3. W(x) > 0 for $x \in (1/2, 1)$
- 4. W(x) < 0 for $x \in [0, 1/2)$
- 3. Let x = x(s), y = y(s), u = u(s), $s \in \mathbb{R}$, be the characteristic curves

$$\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right) - u = 0$$
, passing through a given

curve x = 0, $y = \tau$, $u = \tau^2$, $\tau \in \mathbb{R}$. Then the characteristics are given by

1.
$$x = 3\tau(e^s - 1), y = \frac{\tau}{2}(e^{-s} + 1), u = \tau^2 e^{-2s}$$
.

2.
$$x = 2\tau(e^{-s} - 1), y = \tau(2e^{2s} - 1),$$

$$u = \frac{\tau^2}{2} (1 + e^{-2s}).$$

3.
$$x = 2\tau(e^s - 1)$$
, $y = \frac{\tau}{2}(e^s + 1)$, $u = \tau^2 e^{2s}$.

4.
$$x = \tau(e^{-s} - 1), y = -2\tau \left(e^{-s} - \frac{3}{2}\right),$$

 $u = \tau^2 (2e^{-2s} - 1)$

4. Consider the initial value problem in \mathbb{R}^2 $Y'(t) = AY + BY; Y(0) = Y_0,$

where
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
,

$$B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$
 Then Y(t) is given by

- 1. $e^{tA}e^{tB}Y_0$ 2. $e^{tB}e^{tA}Y_0$ 3. $e^{t(A+B)}Y_0$ 4. $e^{-t(A+B)}Y_0$

PART - C

- 5. Consider the boundary value problem $-u''(x) = \pi^2 u(x), x \in (0,1), u(0) = u(1) = 0.$ If u and u' are continuous on [0,1], then
 - 1. $\int_{1}^{1} u^{3}(x) dx = 0$.
 - 2. $u'^{2}(x) + \pi^{2}u^{2}(x) = u'^{2}(0)$.
 - 3. $u'^2(x) + \pi^2 u^2(x) = u'^2(1)$.
 - 4. $\int_0^1 u^2(x) dx = \frac{1}{\pi^2} \int_0^1 u'^2(x) dx$.
- **6.** The PDE $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ is
 - parabolic and has characteristics $\xi(x, y) = x + 2y, \, \eta(x, y) = x - 2y.$
 - 2. reducible to the canonical form $\frac{\partial^2 u}{\partial \xi^2} = 0$, where $\xi(x, y) = x + 2y$.
 - 3. reducible to the canonical form $\frac{\partial^2 u}{\partial n^2} = 0$, where $\eta(x, y) = x + y$.
 - 4. parabolic and has the general solution $u=(x-y)f_1$ $(x+y)+f_2$ (x-y), where f_1 , f_2 are arbitrary functions.
- 7. Let u(t) be a continuously differentiable function taking non-negative values for t > 0satisfying $u'(t) = 3(u(t))^{2/3}$ and u(0)=0. Which of the following are possible solutions of the given equation?
 - 1. u(t)=0
 - 2. $u(t)=t^3$

3.
$$u(t) = \begin{cases} 0 & for & 0 < t < 1 \\ (t-1)^3 & for & t \ge 1 \end{cases}$$
4. $u(t) = \begin{cases} 0 & for & 0 < t < 3 \\ (t-3)^3 & for & t \ge 3 \end{cases}$

- **8.** Let u(x,t) be the solution of the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \text{ which tends to zero as } t \to \infty$ and has the value $\cos x$, when t = 0. Then
 - 1. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-nt}$, where a_n , b_n are arbitrary constants.
 - 2. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 t}$, where a_n , b_n are non zero constants.
 - 3. $u = \sum_{n=1}^{\infty} a_n \cos(nx + b_n)e^{-nt}$, where a_n are not all zero and $b_n = 0$ for $n \ge 1$.
 - 4. $u = \sum_{n=1}^{\infty} a_n \cos(nx + b_n) e^{-n^2 t}$, where $a_1 \neq 0$, $a_n = 0$ for n > 1, and $b_n = 0$ for $n \geq 1$.
- **9.** Let xyu = c₁ and x²+y²-2u = c₂, where c₁ and c₂ are arbitrary constants, be the first integrals of the PDE $x(u+y^2)\frac{\partial u}{\partial x} y(u+x^2)\frac{\partial u}{\partial y} = (x^2-y^2)u$.

Then the solution of the PDE with x + y=0, u = 1 is given by

1.
$$x^3 + y^3 + 2xyu^2 + 2x^2u = 0$$

2.
$$x^3 + yx^2 + (x^2 + xy)u = 0$$

3.
$$x^2 + y^2 + 2(xy-1)u + 2 = 0$$

4.
$$x^2 - y^2 - u(x + y - 2) - 2 = 0$$

DECEMBER - 2014

PART – B

10. For $\lambda \in \mathbb{R}$, consider the boundary value problem

$$\begin{cases} x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} + \lambda y = 0, \ x \in [1,2] \\ y(1) = y(2) = 0 \end{cases} - (P_{\lambda})$$

Which of the following statement is true?

- 1. There exists a $\lambda_0 \in \mathbb{R}$ such that (P_{λ}) has a nontrivial solution for any $\lambda > \lambda_0$.
- 2. $\{\lambda \in \mathbb{R} : (P_{\lambda}) \text{ has a nontrivial solution} \}$ is a dense subset of \mathbb{R} .

- 3. For any continuous function $f:[1,2] \to \mathbb{R}$ with $f(x) \neq 0$ for some $x \in [1,2]$, there exists a solution u of (P_{λ}) for some $\lambda \in \mathbb{R}$ such that $\int_{1}^{2} fu \neq 0$.
- 4. There exists a $\lambda \in \mathbb{R}$ such that (P_{λ}) has two linearly independent solutions.
- **11.** Let y: $\mathbb{R} \to \mathbb{R}$ be differentiable and satisfy the

$$\begin{cases} \frac{dy}{dx} = f(y), x \in \mathbb{R} \\ y(0) = y(1) = 0 \end{cases}$$

where $f{:}\mathbb{R}{\:\longrightarrow\:}\mathbb{R}$ is a Lipschitz continuous function. Then

- 1. y(x) = 0 if and only if $x \in \{0,1\}$
- 2. y is bounded
- 3. y is strictly increasing
- 4. dy/dx is unbounded
- 12. The system of ODE

$$\frac{dx}{dt} = (1+x^2)y, t \in \mathbb{R}$$

$$\frac{dy}{dt} = -(1+x^2)x, t \in \mathbb{R}$$

$$(x(0), y(0)) = (a,b)$$

has a solution:

- 1. only if (a,b)=(0,0)
- 2. for any $(a,b) \in \mathbb{R} \times \mathbb{R}$
- 3. such that $x^2(t) + y^2(t) = a^2 + b^2$ for all $t \in \mathbb{R}$
- 4. such that $x^2(t) + y^2(t) \rightarrow \infty$ as $t \rightarrow \infty$ if a > 0 and b > 0

PART - C

13. Let $y : \mathbb{R} \to \mathbb{R}$ be a solution of the ODE

$$\frac{d^2 y}{dx^2} - y = e^{-x}, x \in \mathbb{R}$$
$$y(0) = \frac{dy}{dx}(0) = 0$$

then

- 1. y attains its minimum on \mathbb{R}
- 2. y is bounded on \mathbb{R}
- 3. $\lim_{x \to \infty} e^{-x} y(x) = \frac{1}{4}$

$$4. \quad \lim_{x \to -\infty} e^x y(x) = \frac{1}{4}$$

14. Let P,Q be continuous real valued functions defined on [-1,1] and u_i :[-1,1] $\rightarrow \mathbb{R}$, i=1,2 be solutions of the ODE:

$$\frac{d^{2}u}{dx^{2}} + P(x)\frac{du}{dx} + Q(x)u = 0, x \in [-1,1]$$

satisfying $u_1 \ge 0, u_2 \le 0$ and $u_1(0) = u_2(0) = 0$. Let W denote the Wronskian of u₁ and u₂, then

- 1. u_1 and u_2 are linearly independent
- 2. u_1 and u_2 are linearly dependent
- 3. W(x) = 0 for all $x \in [-1,1]$
- 4. $W(x) \neq 0$ for some $x \in [-1,1]$
- **15.** Let $u(x,t) = e^{i\omega x}v(t)$ with v(0)=1 be a solution to

$$\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3}$$
. Then

- 1. $u(x,t) = e^{i\omega(x-\omega^2 t)}$ 2. $u(x,t) = e^{i\omega x \omega^2 t}$
- 3. $u(x,t) = e^{i\omega(x+\omega^2t)}$ 4. $u(x,t) = e^{i\omega^3(x-t)}$
- **16.** The Charpit's equations PDE $up^2 + q^2 + x + y = 0, p = \frac{\partial u}{\partial x}, q = \frac{\partial u}{\partial y}$ are

1.
$$\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u + 2q^2}$$

$$=\frac{dp}{2pu}=\frac{dq}{2q}$$

2.
$$\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{-1 - p^3}$$

$$=\frac{dq}{-1-qp^2}$$

3.
$$\frac{dx}{up^2} = \frac{dy}{q^2} = \frac{du}{0} = \frac{dp}{x} = \frac{dq}{y}$$

4.
$$\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^2} = \frac{dq}{qp^2}$$

17. Consider the Cauchy problem of finding u=u(x,t) such that $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = 0$ for $x \in \mathbb{R}$, t > 0 $u(x,0) = u_0(x), x \in \mathbb{R}$

Which choice(s) of the following functions for u_0 yield a C^1 solution u(x,t) for all $x \in \mathbb{R}$ and

1.
$$u_0(x) = \frac{1}{1+x^2}$$
 2. $u_0(x) = x$

3.
$$u_0(x) = 1 + x^2$$
 4. $u_0(x) = 1 + 2x$

18. Let u(x,t) satisfy for $x \in \mathbb{R}$, t > 0

$$\frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t} + 2\frac{\partial^2 u}{\partial x^2} = 0$$
. A solution of the form

$$u = e^{ix}v(t)$$
 with $v(0)=0$ and $v'(0)=1$

- 1. is necessarily bounded
- 2. satisfies |u(x,t)|< e^t
- 3. is necessarily unbounded
- 4. is oscillatory in x.
- **19.** Let u=u(x,t) be the solution of the Cauchy problem

$$\frac{\partial u}{\partial t} + \left(\frac{\partial u}{\partial x}\right)^2 = 1 \quad \mathbf{X} \in \mathbb{R}, \ \mathbf{t} > 0, \ u(x,0) = -x^2 \ ; \ x \in \mathbb{R}$$

- 1. u(x,t) exists for all $x \in \mathbb{R}$ and t > 0
- 2. $|u(x,t)| \rightarrow \infty$ as $t \rightarrow t^*$ for some $t^* > 0$ and $x \neq 0$
- 3. $u(x,t) \le 0$ for all $x \in \mathbb{R}$ and for all $t<\frac{1}{4}$.
- 4. u(x,t) > 0 for some $x \in \mathbb{R}$ and 0 < t < 1/4

JUNE - 2015

PART - B

- **20.** The initial value problem $y' = 2\sqrt{y}$, y(0) = a,
 - 1. a unique solution if a < 0
 - 2. no solution if a > 0
 - 3. infinitely many solutions if a =0
 - 4. a unique solution if $a \ge 0$
- **21.** Let y(x) be a continuous solution of the initial problem y'+2y = f(x), y(0)=0,

where
$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$
.

Then
$$y\left(\frac{3}{2}\right)$$
 is equal to

$$1. \frac{\sinh (1)}{e^3}$$

2.
$$\frac{\cosh{(1)}}{e^3}$$

3.
$$\frac{\sinh (1)}{e^2}$$

$$4. \frac{\cosh{(1)}}{e^2}$$

22. The singular integral of ODE $(xy'-y)^2 = x^2(x^2-y^2)$ is

1.
$$y = x \sin x$$

1.
$$y = x \sin x$$
 2. $y = x \sin \left(x + \frac{\pi}{4}\right)$

3.
$$y = x$$

3.
$$y = x$$
 4. $y = x + \frac{\pi}{4}$

23. The function $G(x,\zeta) = \begin{cases} a + b \log \zeta, & 0 < x \le \zeta \\ c + d \log x, & \zeta \le x \le 1 \end{cases}$

is a Green's function for xy" + y' = 0, subject to y being bounded as $x\rightarrow 0$ and y(1) = y'(1), if

1.
$$a = 1$$
, $b = 1$, $c = 1$, $d = 1$

2.
$$a = 1$$
, $b = 0$, $c = 1$, $d = 0$

3.
$$a = 0$$
, $b = 1$, $c = 0$, $d = 1$

4.
$$a = 0$$
, $b = 0$, $c = 0$, $d = 0$

24. For the initial value problem

$$\frac{dy}{dx} = y^2 + \cos^2 x, \quad x > 0 \; ; \; y(0) = 0,$$

The largest interval of existence of the solution predicted by Picard's thorem is:

25. Let P be a continuous function on \mathbb{R} and W be the Wronskian of two linearly independent solutions y₁ and y₂ of the ODE:

$$\frac{d^{2}y}{dx^{2}} + (1+x^{2})\frac{dy}{dx} + P(x)y = 0, x \in \mathbb{R}.$$

Let W(1) = a, W(2) = b and W(3) = c, then 1. a < 0 and b > 0

2. a < b < c or a > b > c

$$3. \frac{a}{|a|} = \frac{b}{|b|} = \frac{c}{|c|}$$

4. 0 < a < b and b > c > 0

26. Consider the initial problem

$$\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0, \ u(0, y) = 4e^{-2y}.$$

Then the value of u(1,1) is

27. Let $a,b \in \mathbb{R}$ be such that $a^2 + b^2 \neq 0$. Then

the Cauchy problem
$$a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = 1; x, y \in \mathbb{R}$$

$$u(x, y) = x$$
 on $ax + by = 1$

- has more than one solution if either a or b is zero
- 2. has no solution
- 3. has a unique solution
- has infinitely many solutions
- 28. The critical point of the system

$$\frac{dx}{dt} = -4x - y$$
, $\frac{dy}{dt} = x - 2y$ is an

- 1. asymptotically stable node
- 2. unstable node
- 3. asymptotically stable spiral
- 4. unstable spiral
- 29. The second order partial differential equation $u_{xx} + xu_{yy} = 0$ is
 - 1. elliptic for x > 0
- 2. hyperbolic for x > 0
- 3. elliptic for x < 0
- 4. hyperbolic for x < 0

PART - C

30. Which of the following are complete integrals of the partial differential equation $pqx + yq^{2} = 1$?

1.
$$z = \frac{x}{a} + \frac{ay}{x} + b$$
 2. $z = \frac{x}{b} + \frac{ay}{x} + b$

3.
$$z^2 = 4(ax + y) + b$$
 4. $(z - b)^2 = 4(ax + y)$

31. For an arbitrary continuously differentiable function f, which of the following is a general solution of $z(px - qy) = y^2 - x^2$

1.
$$x^2 + y^2 + z^2 = f(xy)$$

1.
$$x^2 + y^2 + z^2 = f(xy)$$

2. $(x+y)^2 + z^2 = f(xy)$

3.
$$x^2 + v^2 + z^2 = f(v - x)$$

3.
$$x^2 + y^2 + z^2 = f(y - x)$$

4. $x^2 + y^2 + z^2 = f((x + y)^2 + z^2)$

DEC-2015

PART - B

- **32.** The PDE $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = x$, has
 - 1. only one particular integral.

- 2. a particular integral which is linear in x and
- 3. a particular integral which is a quadratic polynomial in x and y.
- more than one particular integral.
- 33. The solution of the initial value problem

$$(x-y)\frac{\partial u}{\partial x} + (y-x-u)\frac{\partial u}{\partial y} = u, u(x, 0) = 1,$$

- 1. $u^2 (x y + u) + (y x u) = 0$.
- 2. $u^2 (x + y + u) + (y x u) = 0$
- 3. $u^2 (x y + u) (x + y + u) = 0$
- 4. $u^2 (y x + u) + (x + y u) = 0$
- **34.** Let u(x,y) be the solution of the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which tends to zero as y $\rightarrow \infty$

and has the value $\sin x$ when y = 0. Then

- 1. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-ny}$, where a_n are arbitrary and b_n are non-zero constants.
- 2. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 y}$, where $a_1 = 1$ and a_n (n > 1), b_n are non-zero constants.
- 3. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-ny}$, where $a_1 = 1$, $a_n = 0$ for n > 1 and $b_n = 0$ for
- 4. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-n^2y}$, where $b_n = 0$ for $n \ge 0$ and a_n are all nonzero.

PART - C

35. Let u(x,t) satisfy the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}; x \in (0, 2\pi), t > 0 \text{ for some } \omega \in \mathbb{R}.$$

 $u(x,0) = e^{i\omega x}$

Then

- 1. $u(x,t)=e^{i_{0}x}e^{i_{0}t}$
- 2. $u(x,t)=e^{i\omega x}e^{-i\omega t}$

3.
$$u(x,t)=e^{i\alpha x}\left(\frac{e^{i\alpha t}+e^{-i\alpha t}}{2}\right)$$
.

- 4. $u(x,t) = t + \frac{x^2}{2}$.
- 36. A solution of the PDE

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - u = 0 \text{ represents}$$

- 1. an ellipse in the x-y plane.
- 2. an ellipsoid in the xyu space.

- 3. a parabola in the u-x plane.
- 4. A hyperbola in the u-y plane.
- **37.** Consider the ODE on \mathbb{R} y'(x) = f(y(x)). If f is an even function and y is an odd function, then
 - -y(-x) is also a solution
 - 2. y(-x) is also a solution.
 - 3. -y(x) is also a solution.
 - y(x) y (-x) is also a solution.
- **38.** Consider the system of ODE in \mathbb{R}^2 .

$$\frac{dY}{dt} = AY, Y(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, t > 0 \text{ where}$$

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
 and $Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$. Then

- 1. y₁(t) and y₂(t) are monotonically increasing
- 2. $y_1(t)$ and $y_2(t)$ are monotonically increasing for t > 1.
- 3. $y_1(t)$ and are monotonically decreasing for t > 0.
- 4. $y_1(t)$ and $y_2(t)$ monotonically are decreasing for t > 1.
- 39. Consider the boundary value problem

$$-u''(x) = \pi^2 u(x)$$
; $x \in (0, 1)$
 $u(0) = u(1) = 0$.

If u and u' are continuous on [0, 1], then

1.
$$u'^2(x) + \pi^2 u^2(x) = u'^2(0)$$

2.
$$\int_0^1 u'^2(x) dx - \pi^2 \int_0^1 u^2(x) dx = 0$$

3.
$$u'^2(x) + \pi^2 u^2(x) = 0$$

4.
$$\int_0^1 u'^2(x) dx - \pi^2 \int_0^1 u^2(x) dx = u'^2(0)$$

- **40.** Let u(t) be a continuously differentiable function taking non negative values for t > 0 and satisfying $u'(t) = 4u^{3/4}(t)$; u(0) = 0. Then
 - 1. u(t) = 0.
 - 2. $u(t) = t^4$.

3.
$$u(t) = \begin{cases} 0 & for \ 0 < t < 1 \\ (t-1)^4 & for \ t \ge 1. \end{cases}$$

3.
$$u(t) =\begin{cases} 0 & for \ 0 < t < 1 \\ (t-1)^4 & for \ t \ge 1. \end{cases}$$
4. $u(t) =\begin{cases} 0 & for \ 0 < t < 10 \\ (t-10)^4 & for \ t \ge 10. \end{cases}$

JUNE - 2016

PART - B

41. Let y_1 and y_2 be two solutions of the problem

$$y''(t) + ay'(t) + by(t) = 0, t \in R$$
$$y(0) = 0$$

where a and b are real constants. Let w be the Wronskian of y_1 and y_2 . Then

- $w(t) = 0, \forall t \in R$
- 2. $w(t) = c, \forall t \in R$ for some positive constant c
- 3. w is a non constant positive function
- There exist $t_1, t_2 \in R$ such that $w(t_1) < 0 < w(t_2)$
- 42. For the Cauchy problem

$$u_{t} - uu_{x} = 0, x \in R, t > 0$$

$$u(x,0) = x, x \in R,$$

which of the following statements is true?

- The solution u exists for all t > 0
- The solution u exist for $t < \frac{1}{2}$ and

breaks down at $t = \frac{1}{2}$

- The solution u exist for t < 1 and break 3. down at t=1
- The solution u exist for t < 2 and breaks down at t=2

43. Let
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
, $x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$ and

$$|x(t)| = (x_1^2(t) + x_2^2(t) + x_3^2(t))^{1/2}$$

Then any solution of the first order system of the ordinary differential equation

$$x'(t) = Ax(t)$$

$$x(0) = x_0$$

Satisfies

- 1. $\lim_{t \to \infty} |x(t)| = 0$ 2. $\lim_{t \to \infty} |x(t)| = \infty$ 3. $\lim_{t \to \infty} |x(t)| = 2$ 4. $\lim_{t \to \infty} |x(t)| = 12$
- 44. Let a, b, c, d be four differentiable functions defined on \mathbb{R}^2 . Then the partial differential

$$\left(a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y}\right)\left(c(x,y)\frac{\partial}{\partial x} + d(x,y)\frac{\partial}{\partial y}\right)u = 0$$

- 1. always hyperbolic
- 2. always parabolic
- 3. never parabolic
- 4. never elliptic

PART - C

45. Consider the Cauchy problem for the Eikonal equation $p^2 + q^2 = 1$; $p = \frac{\partial u}{\partial x}$, $q = \frac{\partial u}{\partial y}$ u(x,y) = 0

on x + y = 1. $(x,y) \in \mathbb{R}^2$. Then

The Charpit's equations the differential equation are

$$\frac{dx}{dt} = 2p; \frac{dy}{dt} = 2q; \frac{du}{dt} = 2; \frac{dp}{dt}$$
$$= -p; \frac{dq}{dt} = -q.$$

The Charpit's equations for 2. the differential equation are

$$\frac{dx}{dt} = 2p; \frac{dy}{dt} = 2q; \frac{du}{dt} = 2;$$
$$\frac{dp}{dt} = 0; \frac{dq}{dt} = 0.$$

- $u(1,\sqrt{2}) = \sqrt{2}$ 3.
- $u(1,\sqrt{2})=1.$
- **46.** Let $y : \mathbb{R} \to \mathbb{R}$ be a solution of the ordinary differential equation, $2y''+3y'+y=e^{-3x}$. $x \in \mathbb{R}$ satisfying $\lim_{x \to \infty} e^x y(x) = 0$. Then
 - 1. $\lim_{x \to \infty} e^{2x} y(x) = 0$.

2.
$$y(0) = \frac{1}{10}$$
.

- 3. y is a bounded function on \mathbb{R} .
- 4. y(1) = 0.
- **47.** For $\lambda \in \mathbb{R}$, consider the differential equation $y'(x) = \lambda \sin(x+y(x)), y(0) = 1$. Then this initial value problem has:
 - 1. no solution in any neighbourhood of 0.
 - 2. a solution in \mathbb{R} if $|\lambda| < 1$.
 - 3. a solution in a neighbourhood of 0.
 - 4. a solution in \mathbb{R} only if $|\lambda| > 1$.
- 48. The problem

$$-y'' + (1+x)y = \lambda y, \ x \in (0,1)$$
$$y(0) = y(1) = 0$$

has a non zero solution

- 1. for all λ < 0.
- 2. for all $\lambda \in [0,1]$.
- 3. for some $\lambda \in (2, \infty)$.
- 4. for a countable number of λ 's.

49. Let $u : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ be a solution of the initial value problem

$$u_{tt} - u_{xx} = 0, \ for(x,t) \in R \times (0,\infty)$$
 $u(x,0) = f(x), x \in R$
 $u_{tt}(x,0) = g(x), x \in R$

Suppose f(x) = g(x) = 0 for $x \notin [0,1]$, then we always have

- 1. u(x,t) = 0 for all $(x,t) \in (-\infty,0) \times (0,\infty)$.
- 2. u(x,t) = 0 for all $(x,t) \in (1,\infty) \times (0,\infty)$.
- 3. u(x,t) = 0 for all (x,t) satisfying x + t < 0.
- 4. u(x,t) = 0 for all (x,t) satisfying x t > 1.
- 50. Let u be the solution of the boundary value problem $u_{xx} + u_{yy} = 0$ for 0 < x, $y < \pi$ $u(x,0) = 0 = u(x,\pi)$ for $0 \le x \le \pi$ u(0,y)=0, $u(\pi,y)=\sin y + \sin 2y$ for 0≤ y≤π
 - $u\left(1,\frac{\pi}{2}\right) = (\sinh(\pi))^{-1} \sinh(1).$
 - 2. $u\left(1,\frac{\pi}{2}\right) = \left(\sinh(\pi)\right)^{-1}\sinh(\pi).$
 - 3. $u\left(1, \frac{\pi}{4}\right) = (\sinh(\pi))^{-1} (\sinh(1)) \frac{1}{\sqrt{2}} +$ $(\sinh(2\pi))^{-1}\sinh(2).$
 - 4. $u\left(1, \frac{\pi}{4}\right) = (\sinh(1))^{-1} (\sinh(\pi)) \frac{1}{\sqrt{2}} +$ $(\sinh(2))^{-1} \sinh(2\pi)$.

DEC - 2016

PART - B

51. Let (x(t), y(t)) satisfy the system of ODEs

$$\frac{dx}{dt} = -x + ty$$

$$\frac{dy}{dt} = tx - y$$

If $(x_1(t), y_1(t))$ and $(x_2(t), y_2(t))$ are two solutions and $\Phi(t) = x_1(t)y_2(t) - x_2(t)y_1(t)$

then $\frac{d\Phi}{dt}$ is equal to

- **52.** The boundary value problem $x^2y''-2xy'+2y = 0$, subject to the boundary conditions $y(1) + \alpha y'(1) = 1$, $y(2) + \beta y'(2) = 2$ has a unique solution if

 - 1. $\alpha = -1$, $\beta = 2$. 2. $\alpha = -1$, $\beta = -2$.

3.
$$\alpha = -2$$
, $\beta = 2$. 4. $\alpha = -3$, $\beta = \frac{2}{3}$.

- **53.** The PDE $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y} = 0$ is
 - 1. hyperbolic for x > 0, y < 0.
 - 2. elliptic for x > 0, y < 0.
 - 3. hyperbolic for x > 0, y > 0.
 - 4. elliptic for x < 0, y > 0.
- 54. Let u(x, t) satisfy the initial boundary value

problem
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
; $x \in (0, 1), t > 0$

 $u(x, 0) = \sin(\pi x); x \in [0, 1]$

u(0, t) = u(1, t) = 0, t > 0

Then for $x \in (0, 1)$, $u\left(x, \frac{1}{\pi^2}\right)$ is equal to

- 1. e $sin(\pi x)$.
- 2. $e^{-1} \sin(\pi x)$.
- 3. $sin(\pi x)$.
- 4. $sin(\pi x)$.
- **55.** Let $x:[0,3\pi] \to \mathbb{R}$ be a nonzero solution of

the ODE $x''(t) + e^{t^2}x(t) = 0$, for $t \in [0,3\pi]$.

Then the cardinality of the set

 $\{t \in [0,3\pi]: x(t) = 0\}$ is

- 1. equal to 1
- 2. greater than or equal to 2
- 3. equal to 2
- 4. greater than or equal to 3

PART - C

56. Consider the initial value problem

 $y'(t) = f(y(t)), y(0) = a \in \mathbb{R}$ where f: $\mathbb{R} \to \mathbb{R}$. Which of the following statements are necessarily true?

- 1. There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a∈R such that the above problem does not have a solution in any neighbourhood of 0.
- 2. The problem has a unique solution for every $a \in \mathbb{R}$ when f is Lipschitz continuous.
- 3. When f is twice continuously differentiable, the maximal interval of existence for the above initial value problem is \mathbb{R} .
- 4. The maximal interval of existence for the above problem is \mathbb{R} when f is bounded and continuously differentiable.
- **57.** Let (x(t),y(t)) satisfy for t>0

$$\frac{dx}{dt} = -x + y, \ \frac{dy}{dt} = -y, x(0) = y(0) = 1.$$

Then x(t) is equal to

1.
$$e^{-t} + ty(t)$$

2. v(t)

3.
$$e^{-t}(1+t)$$

4. - v(t)

58. Consider the wave equation for u(x,t)

$$\frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial^{2} u}{\partial x^{2}} = 0, (x, t) \in \mathbb{R} \times (0, \infty)$$

$$u(x, 0) = f(x), x \in \mathbb{R}$$

$$\frac{\partial u}{\partial t}(x, 0) = g(x), x \in \mathbb{R}$$

Let u_i be the solution of the above problem with $f=f_i$ and $g=g_i$ for i=1,2, where f_i : $\mathbb{R} \to \mathbb{R}$ and g_i : $\mathbb{R} \to \mathbb{R}$ are given C^2 fucntions satisfying $f_1(x)=f_2(x)$ and $g_1(x)=g_2(x)$, for every $x \in [-1,1]$. Which of the following statements are necessarily true?

1.
$$u_1(0,1) = u_2(0,1)$$

2.
$$u_1(1,1) = u_2(1,1)$$

3.
$$u_1\left(\frac{1}{2}, \frac{1}{2}\right) = u_2\left(\frac{1}{2}, \frac{1}{2}\right)$$

4.
$$u_1(0,2) = u_2(0,2)$$

59. Let u: $\mathbb{R}^2 \setminus \{(0,0)\} \rightarrow \mathbb{R}$ be a \mathbb{C}^2 function satisfying $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, for all $(x,y) \neq (0,0)$. Suppose u

is of the form $u(x,y) = f(\sqrt{x^2 + y^2})$, where

f: $(0,\infty) \to \mathbb{R}$, is a non-constant function, then

1.
$$\lim_{x^2+y^2\to 0} |u(x,y)| = \infty$$

2.
$$\lim_{x^2+y^2\to 0} |u(x,y)| = 0$$

$$3. \lim_{x^2+y^2\to\infty} |u(x,y)| = \infty$$

4.
$$\lim_{x^2+y^2\to\infty} |u(x,y)| = 0$$

60. The Cauchy problem $y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = 0$ has a $u = g \ on \ \Gamma$

unique solution in a neighborhood of Γ for every differentiable function g: $\Gamma \to \mathbb{R}$ if

1.
$$\Gamma = \{(x,0): x>0\}$$

2.
$$\Gamma = \{(x,y): x^2 + y^2 = 1\}$$

3.
$$\Gamma = \{(x,y): x+y=1, x>1\}$$

4.
$$\Gamma = \{(x,y): y=x^2, x>0\}$$

JUNE - 2017

PART - B

61. Suppose $x:[0,\infty) \to [0,\infty)$ is continuous and x(0) = 0. If $(x(t))^2 \le 2 + \int_0^t x(s) ds$, $\forall t \ge 0$, then which of the following is TRUE?

1.
$$x(\sqrt{2}) \in [0,2]$$

1.
$$x(\sqrt{2}) \in [0,2]$$
 2. $x(\sqrt{2}) \in \left[0, \frac{3}{\sqrt{2}}\right]$

3.
$$x(\sqrt{2}) \in \left[\frac{5}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right]$$
 4. $x(\sqrt{2}) \in [10, \infty)$

62. The solution of the partial differential equation $u_t - xu_x + 1 - u = 0$, $x \in \mathbb{R}$, t > 0 subject to u(x,0) = g(x) is

1.
$$u(x,t) = 1 - e^{-t} (1 - g(xe^t))$$

2.
$$u(x,t) = 1 + e^{t}(1 - g(xe^{t}))$$

3.
$$u(x,t) = 1 - e^{-t}(1 - g(xe^{-t}))$$

4.
$$u(x,t) = e^{-t}(1 - g(xe^t))$$

63. Suppose $u \in C^2(\overline{B})$, B is the unit ball in \mathbb{R}^2 , satisfies $\Delta u = f$ in B

$$\alpha u + \frac{\partial u}{\partial \mathbf{n}} = g$$
 on ∂B , $\alpha > 0$,

where n is the unit outward normal to B. If a solution exists then

- 1. it is unique
- 2. there are exactly two solutions
- 3. there are exactly three solutions
- 4. there are infinitely many solutions

PART - C

64. Consider the solution of the ordinary differential equation $y'(t) = -y^3 + y^2 + 2y$ subject to $y(0) = y_0 \in (0,2)$. Then

 $\lim y(t)$ belongs to

65. If the solution to $\begin{cases} \frac{dy}{dx} = y^2 + x^2, & x > 0 \end{cases}$

exists in the interval [0, L₀) and the maximal

interval of existence of $\begin{cases} \frac{dz}{dx} = z^2 & \text{, } x > 0 \end{cases}$ is

[0,L₁), then which of the following statements are correct?

1.
$$L_1 = 1$$
, $L_0 > 1$ 2. $L_1 = 1$, $L_0 \le 1$

3.
$$L_1 < 2$$
, $L_0 \le 1$ 4. $L_1 > 2$, $L_0 < 1$

- 66. Consider the partial differential equation $x\frac{\partial u}{\partial x} + yu\frac{\partial u}{\partial y} = -xy$ for x > 0 subject to u=5 on xy =1. Then
 - 1. u(x, y)exists when xy≤19 and u(x, y) = u(y, x) for x > 0, y > 0
 - 2. u(x, y)exists when and u(x, y) = u(y, x) for x > 0, y > 0
 - 3. u(1,11)=3, u(13,-1)=7
 - 4. u(1,-1)=5, u(11,1)=-5
- 67. If a complex integral of the partial differential $x(p^2+q^2)=zp; \ p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$ passes through the curve x=0, $z^2 = 4y$, then

the envelope of this family passing through x=1 and y=1 has

3.
$$z = \sqrt{2 + 2\sqrt{2}}$$

3.
$$z = \sqrt{2 + 2\sqrt{2}}$$
 4. $z = -\sqrt{2 + 2\sqrt{2}}$

68. For a differential function $f: \mathbb{R} \to \mathbb{R}$ define the difference quotient

$$(D_x f)(h) = \frac{f(x+h) - f(x)}{h}; h > 0.$$
Consider

numbers of the form $h = h(1+\epsilon)$ for a fixed $\in > 0$ and let

$$e_1(h) = f'(x) - (D_x f)(h), e_2(h) = (D_x f)(h) - (D_x f)(h),$$

 $e(h) = e_1(h) + e_2(h).$

If
$$f(x+\hat{h}) = f(x+h)$$
, then

- 1. $e_1(h) \rightarrow 0$ as $h \rightarrow 0$
- 2. $e_2(h) \rightarrow 0$ as $h \rightarrow 0$
- 3. $e_2(h) \rightarrow \in f'(x)/(1+\epsilon)$ as $h \rightarrow 0$
- 4. $e(h) \rightarrow 0$ as $h \rightarrow 0$

Ph: 9876788051, 9650838031

DECEMBER - 2017

PART - B

69. Consider the differential equation

$$(x-1)y'' + xy' + \frac{1}{x}y = 0$$
. Then

- 1. x = 1 is the only singular point
- 2. x = 0 is the only singular point
- 3. both x = 0 and x = 1 are singular points
- 4. neither x = 0 nor x = 1 are singular points
- **70.** Let D denote the unit disc given by

 $\{(x, y) \mid x^2 + y^2 \le 1\}$ and let D^c be its complement in the plane. The partial differential equation

$$(x^{2}-1)\frac{\partial^{2} u}{\partial x^{2}} + 2y\frac{\partial^{2} u}{\partial x \partial y} - \frac{\partial^{2} u}{\partial y^{2}} = 0 \text{ is}$$

- 1. parabolic for all $(x, y) \in D^c$
- 2. hyperbolic for all $(x, y) \in D$
- 3. hyperbolic for all $(x, y) \in D^c$
- 4. parabolic for all $(x, y) \in D$
- **71.** The set of real numbers λ for which the boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$,

y(0)=0, $y(\pi)=0$ has nontrivial solutions is 1. $(-\infty, 0)$

- 2. $\{\sqrt{n} \mid n \text{ is a positive integer}\}$
- 3. {n² | n is a positive integer}
- **4**. R
- 72. Let u(x, t) be the solution of the initial value

Then
$$u_{tt} - u_{xx} = 0$$
, $u(x, 0) = x^3$, $u_t(x, 0) = \sin x$
Then $u(\pi, \pi)$ is
1. $4\pi^3$ 2. π^3 3. 0 4. 4

1
$$4\pi^3$$

73. Let u(x, t) be a solution of the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 in a rectangle [0, π] × [0, T] subject

to the boundary conditions $u(0, t) = u(\pi, t) = 0$, $0 \le t \le T$ and the initial condition $u(x, 0) = \varphi(x)$, $0 \le x \le \pi$. If f(x) = u(x, T), then which of the following is true for a suitable kernel k(x, y)?

1.
$$\int_{0}^{\pi} k(x, y) \varphi(y) dy = f(x), \ 0 \le x \le \pi$$

2.
$$\varphi(x) + \int_0^{\pi} k(x, y) \varphi(y) dy = f(x), \ 0 \le x \le \pi$$

3.
$$\int_{0}^{x} k(x, y) \varphi(y) dy = f(x), 0 \le x \le \pi$$

4.
$$\varphi(x) + \int_0^x k(x, y) \varphi(y) dy = f(x), \ 0 \le x \le \pi$$

(IS) InfoStudy

BE INFORMED BE LEARNED

PART - C

74. Consider a system of first order differential equations $\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} x(t) + y(t) \\ -y(t) \end{bmatrix}.$

The solution space is spanned by

1.
$$\begin{bmatrix} 0 \\ e^{-t} \end{bmatrix}$$
 and $\begin{bmatrix} e^t \\ 0 \end{bmatrix}$

2.
$$\begin{bmatrix} e^t \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} \cosh t \\ e^{-t} \end{bmatrix}$

3.
$$\begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}$$
 and $\begin{bmatrix} \sinh t \\ e^{-t} \end{bmatrix}$

4.
$$\begin{bmatrix} e^t \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} e^t - \frac{1}{2}e^{-t} \\ e^{-t} \end{bmatrix}$

75. Consider the differential equation $\frac{d^2y}{dx^2} - 2\tan x \frac{dy}{dx} - y = 0 \text{ defined on } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$

Which among the following are true?

- 1. there is exactly one solution y=y(x) with y(0) = y'(0) = 1 and $y\left(\frac{\pi}{3}\right) = 2\left(1 + \frac{\pi}{3}\right)$
- 2. there is exactly one solution y=y(x) with y(0) = 1, y'(0) = 1 and $y\left(-\frac{\pi}{3}\right) = 2\left(1 + \frac{\pi}{3}\right)$
- 3. any solution y=y(x) satisfies y''(0)=y(0)
- 4. If y_1 and y_2 are any two solutions then $(ax+b) y_1=(cx+d)y_2$ for some $a,b,c,d \in \mathbb{R}$
- 76. Consider a boundary value problem (BVP)

$$\frac{d^2y}{dx^2} = f(x)$$
 with boundary conditions

y(0)=y(1)=y'(1), where f is a real-valued continuous function on [0,1]. Then which of the following are true?

- the given BVP has a unique solution for every f
- the given BVP does not have a unique solution for some f
- 3. $y(x) = \int_0^x xtf(t)dt + \int_x^1 (t x + xt)f(t)dt$ is a solution of the given BVP
- 4. $y(x) = \int_0^x (x t + xt) f(t) dt + \int_x^t xt f(t) dt$ is a solution of the given BVP

77. Consider the Lagrange equation

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$$
. Then the general

solution of the given equation is

1.
$$F\left(\frac{xy}{z}, \frac{x-y}{z}\right) = 0$$
 for an arbitrary

differentiable function F

2.
$$F\left(\frac{x-y}{z}, \frac{1}{x} - \frac{1}{y}\right) = 0$$
 for an arbitrary

differentiable function F

3.
$$z = f\left(\frac{1}{x} - \frac{1}{y}\right)$$
 for an arbitrary

differentiable function f

4.
$$z = xyf\left(\frac{1}{x} - \frac{1}{y}\right)$$
 for an arbitrary

differentiable function f

78. Consider the second order PDE $8\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} - 3\frac{\partial^2 z}{\partial y^2} = 0.$ Then which of

the following are correct?

- 1. the equation is elliptic
- the equation is hyperbolic

3. the general solution is
$$z = f\left(y - \frac{x}{2}\right) + g\left(y + \frac{3x}{4}\right), \text{ for arbitrary}$$

differentiable functions f and g

4. the general solution is

$$z = f\left(y + \frac{x}{2}\right) + g\left(y - \frac{3x}{4}\right)$$
, for

arbitrary differentiable functions f and g

79. Let $B = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1\}$, and let $C_{1,r}^2(\overline{B}; \mathbb{R}^2) = \{u \in \mathbb{C}^2 (B; \mathbb{R}^2) | u(x_1, x_2)\}$

=
$$(x_1,x_2)$$
 for $(x_1,x_2)\in\partial B$ }. Let u= (u_1,u_2) and define $J:C^2_{1d}(\overline{B};\mathbb{R}^2){
ightarrow}\mathbb{R}$ by

$$J(u) = \int_{R} \left(\frac{\partial u_1}{\partial x_1} \frac{\partial u_2}{\partial x_2} - \frac{\partial u_1}{\partial x_2} \frac{\partial u_2}{\partial x_1} \right) dx_1 dx_2 \text{ Then}$$

- 1. $\inf\{J(u): u \in C^2_{1d}(\overline{B}; \mathbb{R}^2)\}=0$
- 2. J(u) > 0, for all $u \in C_{1d}^2(\overline{B}; \mathbb{R}^2)$
- 3. f(u)=1, for infinitely many $u \in C^2_{1d}(B; \mathbb{R}^2)$
- 4. J (u)= π , for all $u \in C^2_{1d}(\overline{B}; \mathbb{R}^2)$

(IS) InfoStudy

BE INFORMED BE LEARNED

JUNE - 2018

PART-B

- **80.** Consider the ordinary differential equation y' = y(y-1)(y-2). Which of the following statements is true?
 - 1. If y(0) = 0.5 then y is decreasing
 - 2. If y(0) = 1.2 then y is increasing
 - 3. If y(0) = 2.5 then y is unbounded
 - 4. If y(0) < 0 then y is bounded below
- **81.** Consider the ordinary differential equation y'' + P(x)y' + Q(x)y = 0 where P and Q are smooth functions. Let y_1 and y_2 be any two solutions of the ODE. Let W(x) be the corresponding Wronskian. Then which of the following is always true?
 - 1. If y_1 and y_2 are linearly dependent then $\exists x_1, x_2$ such that $W(x_1) = 0$ and $W(x_2) \neq 0$
 - 2. If y_1 and y_2 are linearly independent then $W(x) = 0 \forall x$
 - 3. If y_1 and y_2 are linearly dependent then $W(x) \neq 0 \forall x$
 - 4. If y_1 and y_2 are linearly independent then $W(x) \neq 0 \forall x$
- 82. The Cauchy problem

$$2u_x + 3u_y = 5$$

$$u = 1 \text{ on the line } 3x - 2y = 0$$
 has

- 1. exactly one solution
- 2. exactly two solutions
- 3. infinitely many solutions
- 4. no solution
- 83. Let u be the unique solution of

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, x \in \mathbb{R}, t>0$$

$$u(x,0) = f(x), \frac{\partial u}{\partial t}(x,0) = 0, x \in \mathbb{R}$$

where f: $\mathbb{R} \to \mathbb{R}$ satisfies the relations $f(x) = x(1-x) \quad \forall \quad x \in [0,1] \text{ and } f(x+1) = f(x) \quad \forall \quad x \in \mathbb{R}. \text{ Then } u\left(\frac{1}{2},\frac{5}{4}\right) \text{ is}$

- 1. $\frac{1}{8}$ 2. $\frac{1}{16}$
- 3. $\frac{3}{16}$ 4. $\frac{5}{10}$

Ph: 9876788051, 9650838031

PART-C

84. Let a be a fixed real constant. Consider the first order partial differential equation $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \quad x \in \mathbb{R}, \ t > 0 \text{ with the initial}$

data $u(x, 0) = u_0(x)$, $x \in \mathbb{R}$ where u_0 is a continuously differentiable function. Consider the following two statements

 S_1 : There exists a bounded function u_0 for which the solution u is unbounded

 S_2 : If u_0 vanishes outside a compact set then for each fixed T>0 there exists a compact set $K_T \subset \mathbb{R}$ such that u(x,T) vanishes for $x \notin \mathbb{R}$

Which of the following are true?

- 1. S₁ is true and S₂ is false
- 2. S₁ is true and S₂ is also true
- 3. S_1 is false and S_2 is true
- 4. S₁ is false and S₂ is also false
- **85.** If u(x,t) is the solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0<x<1, t>0

 $u(x, 0) = 1 + x + \sin(\pi x) \cos(\pi x)$ u(0, t) = 1, u(1, t) = 2.

then

1.
$$u\left(\frac{1}{2}, \frac{1}{4}\right) = \frac{3}{2}$$

- 2. $u\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{3}{2}$
- 3. $u\left(\frac{1}{4}, \frac{3}{4}\right) = \frac{5}{4} + \frac{1}{2}e^{-3\pi^2}$
- 4. $u\left(\frac{1}{4},1\right) = \frac{5}{4} + \frac{1}{2}e^{-4\pi^2}$
- **86.** Assume that $a:[0,\infty)\to\mathbb{R}$ is a continuous function. Consider the ordinary differential equation $y'(x)=a(x)\ y(x),\ x>0,\ y(0)=y_0\neq 0.$ Which of the following statements are true?
 - 1. If $\int_0^\infty |a(x)| dx < \infty$, then y is bounded
 - 2. If $\int_0^\infty |a(x)| dx < \infty$, then $\lim_{x\to\infty} y(x)$ exists
 - 3. If $\lim_{x\to\infty} a(x) = 1$, then $\lim_{x\to\infty} |y(x)| = \infty$
 - 4. If $\lim_{x\to\infty} a(x) = 1$, then y is monotone
- 87. Consider the system of differential equations

$$\frac{dx}{dt} = 2x - 7y$$

$$\frac{dy}{dt} = 3x - 8y$$

Then the critical point (0, 0) of the system is

- 1. asymptotically stable node
- 2. unstable node
- 3. asymptotically stable spiral
- 4. unstable spiral
- 88. Consider the Sturm-Liouville problem $y'' + \lambda y$ = 0, y(0) = 0 and $y(\pi)$ = 0.Which of the following statements are true?
 - There exist only countably many characteristic values
 - 2. There uncountably exist many characteristic values
 - 3. characteristic function corresponding to the characteristic value λ has exactly $[\sqrt{\lambda}]-1$ zeroes in $(0, \pi)$
 - 4. characteristic function corresponding to the characteristic value λ has exactly $[\sqrt{\lambda}]$ zeroes in $(0, \pi)$

DECEMBER - 2018

PART-B

Let u(x,t) be a function that satisfies the PDE $u_{xx} - u_{tt} = e^x + 6t, x \in \mathbb{R}$, t > 0 and the initial conditions $u(x,0) = \sin(x)$, $u_t(x,0) = 0$ for every $x \in \mathbb{R}$. Here subscripts denote derivatives corresponding to the variables indicated. Then the value of $u\left(\frac{\pi}{2},\frac{\pi}{2}\right)$ is

1.
$$e^{\pi/2} \left(1 + \frac{1}{2} e^{\pi/2} \right) + \left(\frac{\pi^3 + 4}{8} \right)$$

2.
$$e^{\pi/2} \left(1 + \frac{1}{2} e^{\pi/2} \right) + \left(\frac{\pi^3 - 4}{8} \right)$$

3.
$$e^{\pi/2} \left(1 - \frac{1}{2} e^{\pi/2} \right) - \left(\frac{\pi^3 + 4}{8} \right)$$

4.
$$e^{\pi/2} \left(1 - \frac{1}{2} e^{\pi/2} \right) - \left(\frac{\pi^3 - 4}{8} \right)$$

90. Let u(x,t) satisfy the IVP: $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, x \in \mathbb{R}$,

t>0 ,
$$u(x,0) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & elsewhere. \end{cases}$$
 Then the

value of $\lim u(1,t)$ equals

- 1. e
- 3. 1/2
- 4. 1

91. If $y_1(x)$ and $y_2(x)$ are two solutions of the Differential equation

$$(\cos x)y'' + (\sin x)y' - (1 + e^{-x^2})y = 0 \ \forall \ x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
 with

$$y_1(0) = \sqrt{2}, y_1'(0) = 1, y_2(0) = -\sqrt{2}, y_2'(0) = 2$$
, then

the Wronskian of $y_1(x)$ and $y_2(x)$ at $x = \frac{\pi}{4}$ is

- 1. $3\sqrt{2}$
- 2.6

3. 3

- 92. The critical point (0,0) for the system

$$x'(t) = x - 2y + y^{2} \sin x$$

 $y'(t) = 2x - 2y - 3y \cos(y^{2})$ is a

- 1. Stable spiral point
- 2. Unstable spiral point
- 3. Saddle point
- 4. Stable node

PART-C

93. Let u(x, t) be a function that satisfies the PDE: $u_t + uu_x = 1$, $x \in \mathbb{R}$, t > 0, and the initial condition $u\left(\frac{t^2}{4},t\right) = \frac{t}{2}$. Then the

- 1. only one solution
- 2. two solutions
- 3. an infinite number of solutions
- solutions none of which is differentiable on the characteristic base curve
- Let u(x) satisfy the boundary value 94.

problem (BVP)
$$\begin{cases} u'' + u' = 0, & x \in (0,1) \\ u(0) = 0 \\ u(1) = 1 \end{cases}$$

finite difference Consider approximation to (BVP)

$$(BVP)_{h} \begin{cases} \frac{U_{j+1} - 2U_{j} + U_{j-1}}{h^{2}} + \frac{U_{j+1} - U_{j-1}}{2h} = 0, j = 1, ..., N - 1 \\ U_{0} = 0 \\ U_{N} = 1 \end{cases}$$

Here U_i is an approximation to u(x_i) where $x_i = jh$, j = 0, ..., N is a partition of [0, 1] with h = 1/N for some positive integer N. Then which of the following are true?

- 1. There exists a solution to $(BVP)_h$ of the form $U_j=ar^j+b$ for some $a,b\in\mathbb{R}$ with $r\neq 1$ and r satisfying $(2+h)r^2-4r+(2-h)=0$
- 2. $U_j = (r^j 1) / (r^N 1)$ where r satisfies $(2 + h) r^2 4r + (2 h) = 0$ and $r \ne 1$
- 3. u is monotonic in x
- 4. U_i is monotonic in j.
- **95.** Three solutions of a certain second order non-homogenous linear differential equation are

 $y_1(x) = 1 + xe^{x^2}, y_2(x) = (1+x)e^{x^2} + 1, y_3(x) = 1 + e^{x^2}.$

Which of the following is (are) general solution(s) of the differential equation?

- 1. $(C_1 + 1)y_1 + (C_2 C_1)y_2 C_2y_3$, where C_1 and C_2 are arbitrary constants
- 2. $C_1 (y_1 y_2) + C_2 (y_2 y_3)$, where C_1 and C_2 are arbitrary constants
- 3. $C_1 (y_1 y_2) + C_2 (y_2 y_3) + C_3 (y_3 y_1)$, where C_1 , C_2 and C_3 are arbitrary constants
- 4. $C_1 (y_1 y_3) + C_2 (y_3 y_2) + y_1$, where C_1 and C_2 are arbitrary constants
- 96. The method of variation of parameters to solve the differential equation y'' + p(x)y' + q(x)y r(x), where $x \in I$ and p(x), q(x), r(x) are non-zero continuous functions on an interval I, seeks a particular solution of the form $y_p(x) = v_1(x)y_1(x) + v_2(x)y_2(x)$, where y_1 and y_2 are linearly independent solutions of y'' + p(x)y' + q(x)y = 0 and $v_1(x)$ and $v_2(x)$ are functions to be determined. Which of the following statements are necessarily true?
 - The Wronskian of y₁ and y₂ is never zero in I.
 - 2. v₁, v₂ and v₁y₁ + v₂y₂ are twice differentiable
 - 3. v_1 and v_2 may not be twice differentiable, but $v_1y_1 + v_2y_2$ is twice differentiable
 - 4. The solution set of y'' + p(x)y' + q(x)y = r(x) consists of functions of the form $ay_1 + by_2 + y_p$ where $a, b \in \mathbb{R}$ are arbitrary constants
- 97. Consider the eigenvalue problem $y'' + \lambda y = 0$ for $x \in (-1, 1)$, y(-1) = y(1), y'(-1) = y'(1). Which of the following statements are true?
 - 1. All eigenvalues are strictly positive
 - 2. All eigenvalues are non-negative

Ph: 9876788051, 9650838031

- 3. Distinct eigenfunctions are orthogonal in $L^2[-1, 1]$.
- 4. The sequence of eigenvalues is bounded above
- **98.** Consider the IVP: $xu_x + tu_t = u + 1$, $x \in \mathbb{R}$, $t \ge 0$ $u(x, t) = x^2$, $t = x^2$. Then
 - 1. the solution is singular at (0, 0)
 - 2. the given space curve $(x, t, u) = (\xi, \xi^2, \xi^2)$ is not a characteristic curve at (0, 0)
 - 3. there is no base-characteristic curve in the (x, t) plane passing through (0,0).
 - 4. a necessary condition for the IVP to have a unique C¹ solution at (0, 0) does not hold

JUNE - 2019

PART - B

- **99.** Let y(x) be the solution of $x^2y''(x) 2y(x) = 0$, y(1) = 1, y(2) = 1. Then the value of y(3) is
 - 1. $\frac{11}{21}$
- 2. 1
- 3. $\frac{17}{21}$
- 4. $\frac{11}{7}$
- **100.** The positive values of λ for which the equation $y''(x) + \lambda^2 y(x) = 0$ has non-trivial solution satisfying $y(0) = y(\pi)$ and $y'(0) = y'(\pi)$ are

1.
$$\lambda = \frac{2n+1}{2}, n = 1, 2, ...$$

- 2. λ = 2n, n = 1, 2, ...
- 3. λ = n, n = 1, 2, ...
- 4. $\lambda = 2n 1$, n = 1, 2, ...
- 101. Consider the PDE

$$P(x,y)\frac{\partial^2 u}{\partial x^2} + e^{x^2} e^{y^2} \frac{\partial^2 u}{\partial x \partial y} +$$

$$Q(x, y)\frac{\partial^2 u}{\partial y^2} + e^{2x}\frac{\partial u}{\partial x} + e^y\frac{\partial u}{\partial y} = 0,$$

where P and Q are polynomials in two variables with real coefficients. Then which of the following is true for all choices of P and O2

- 1. There exists R > 0 such that the PDE is elliptic in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > R\}$
- 2. There exists R > 0 such that the PDE is hyperbolic in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > R\}$

- 3. There exists R > 0 such that PDE is parabolic in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > R\}$ 4. There exists R > 0 such that the PDE is
- hyperbolic in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < R\}$
- 102. Let u be the unique solution of

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \text{ where } (x,t) \in (0,1) \times (0,\infty)$$

$$u(x,0) = \sin \pi x, \qquad x \in (0,1)$$

$$u(0,t) = u(1,t) = 0, \qquad t \in (0,\infty)$$

Then which of the following is true?

- 1. There exists $(x, t) \in (0, 1) \times (0, \infty)$ such that u(x, t) = 0
- 2. There exists $(x, t) \in (0, 1) \times (0, \infty)$ such that $\frac{\partial u}{\partial t}(x,t) = 0$
- 3. The function e^tu (x, t) is bounded for $(x, t) \in (0, 1) \times (0, \infty)$
- 4. There exists $(x, t) \in (0, 1) \times (0, \infty)$ such that u(x, t) > 1

PART - C

- Let $y_1(x)$ be any non-trivial real valued 103. solution of y''(x) + xy(x) = 0, $0 < x < \infty$. Let $y_2(x)$ be the solution of $y''(x) + y(x) = x^2 + 2$, y(0) = y'(0) = 0. Then
 - 1. y₁(x) has infinitely many zeros.
 - 2. y₂(x) has infinitely many zeros
 - 3. $y_1(x)$ has finitely many zeros
 - 4. $y_2(x)$ has finitely many zeros
- 104. Consider the equation y''(x) + a(x) y(x) = 0. a(x) is continuous function with period T. Let $\phi_1(x)$ and $\phi_2(x)$ be the basis for the solution satisfying $\phi_1(0) = 1$,

 $\phi_1'(0) = 0, \phi_2(0) = 0, \phi_2'(0) = 1.$ Let W $(\phi_1, \phi_2'(0)) = 0$ ϕ_2) denote the Wronskian of ϕ_1 and ϕ_2 . Then

- 1. $W(\phi_1, \phi_2) = 1$
- 2. W $(\phi_1, \phi_2) = e^x$
- 3. $\phi_1(T) + \phi_2'(T) = 2$ if the given differential equation has a nontrivial periodic solution with period T
- 4. $\phi_1(T) + \phi'_2(T) = 1$ if the given differential equation has a nontrivial periodic solution with period T
- 105. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function such that f(x) = 0 if and only if $x = \pm n^2$ where

 $n \in \mathbb{N}$. Consider the initial value problem: $y'(t) = f(y(t)), y(0) = y_0.$

Then which of the following are true?

- 1. y is a monotone function for all $y_0 \in \mathbb{R}$
- 2. for any $y_0 \in \mathbb{R}$, there exists $M_{y_0} > 0$ such that $|y(t)| \le M_{y_0}$ for all
- 3. there exists a $y_0 \in \mathbb{R}$, such that the corresponding solution y is unbounded
- 4. $\sup_{t,s\in\mathbb{R}} |y(t)-y(s)| = 2n+1 \text{ if } y_0\in (n^2, (n+1)^2), n\geq 1$
- 106. The general solution z = z(x, y) of $(x+y)z z_x$
 - + $(x y)z z_y = x^2 + y^2$ is 1. F $(x^2 + y^2 + z^2, z^2 xy) = 0$ for arbitrary C^1 function F 2. F $(x^2 y^2 z^2, z^2 2xy) = 0$ for arbitrary C^1 function F

 - 3. F(x + y + z, z 2xy) = 0 for arbitrary C^1
 - 4. $F(x^3 y^3 z^3, z 2x^2y^2) = 0$ for arbitrary C^1 function F
- 107. Let u be the solution of the problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad (x, y) \in (0, \pi) \times (0, \pi),$$

$$u(0, y) = u(\pi, y) = 0, \qquad y \in (0, \pi),$$

$$u(x, 0) = 0, u(x, \pi) = \sin(2x), \quad x \in (0, \pi).$$

- 1. $\max \{u(x, y) : 0 \le x, y \le \pi\} = 1$
- 2. $u(x_0, y_0) = 1$ for some $(x_0, y_0) \in (0, \pi) \times$
- 3. $u(x, y) > -1 \text{ for all } (x, y) \in (0, \pi) \times (0, \pi)$
- 4. min {u (x, y) : $0 \le x$, $y \le \pi$ } > -1
- 108. Let u be the solution of

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, (x, t) \in \mathbb{R} \times (0, \infty),$$

$$u(x, 0) = f(x), \qquad x \in \mathbb{R},$$

$$u_t(x, 0) = g(x), \qquad x \in \mathbb{R}$$

where f, g are in C^2 (\mathbb{R}) and satisfy the following conditions

- (i) f(x) = g(x) = 0 for $x \le 0$,
- (ii) $0 < f(x) \le 1$ for x > 0,
- (iii) g(x) > 0 for x > 0
- (iv) $\int_{0}^{\infty} g(x) dx < \infty$.

Then, which of the following statements are true?

1. u(x, t) = 0 for all $x \le 0$ and t > 0

- 2. u is bounded on $\mathbb{R} \times (0, \infty)$
- 3. u(x, t) = 0 whenever x + t < 0
- 4. u(x, t) = 0 for some (x, t) satisfying x + t > 0

DECEMBER-2019

PART-B

- 109. Let u(x, y) be the solution $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 64 \text{ in the unit disc } \{(x, y) \mid x^2\}$
 - + y^2 < 1} and such that u vanishes on the

boundary of the disc. Then $u\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$ is

equal to

- 1. 7
- 2.16
- 3. -7
- 4. -16
- 110. For the following system of ordinary differential equations

$$\frac{dx}{dt} = x(3 - 2x - 2y),$$

$$\frac{dy}{dt} = y(2-2x-y),$$

the critical point (0, 2) is

- 1. a stable spiral
- 2. an unstable spiral
- 3. a stable node
- 4. an unstable node
- 111. The Cauchy problem

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0$$

and $x_0(s) = cos(s)$, $y_0(s) = sin(s)$, $z_0(s) = 1$, s > 0 has

- 1. a unique solution
- 2. no solution
- 3. more than one but finite number of solutions
- 4. infinitely many solutions
- 112. Consider the system of ordinary differential equations

$$\frac{dx}{dt} = 4x^3y^2 - x^5y^4,$$

$$\frac{dy}{dt} = x^4 y^5 + 2x^2 y^3.$$

Ph: 9876788051, 9650838031

Then for this system there exists

- 1. a closed path in $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 5\}$
- 2. a closed path in $\{(x,y) \in \mathbb{R}^2 | 5 < x^2 + y^2 \le 10 \}$

- 3. a closed path in $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 10\}$
- 4. no closed path in \mathbb{R}^2

PART - C

113. Consider the initial value problem

$$\frac{dy}{dx} = x^2 + y^2$$
, y(0) = 1; 0 \le x \le 1. Then

which of the following statements are true?

There exists a unique solution in

$$\left[0,\frac{\pi}{4}\right]$$

2. Every solution is bounded

$$\left[0,\frac{\pi}{4}\right]$$

- The solution exhibits a singularity at 3. some point in [0, 1]
- The solution becomes unbounded

in some subinterval of
$$\left[\frac{\pi}{4},1\right]$$

114. Let u(x, t) be the solution of

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = xt, -\infty < x < \infty, t > 0,$$

$$u(x,0) = \frac{\partial u}{\partial t}(x,0) = 0, -\infty < x < \infty.$$

Then u(2, 3) is equal to

- 1.9
- 3.27
- 4.12
- 115. Consider the eigenvalue problem

$$((1 + x^4)y')' + \lambda y = 0, x \in (0, 1),$$

$$y(0) = 0$$
, $y(1) + 2y'(1) = 0$.

Then which of the following statements are true?

- 1. all the eigenvalues are negative
- 2. all the eigenvalues are positive
- 3. there exist some negative eigenvalues and some positive eigenvalues
- 4. there are no eigenvalues
- 116. Let y be a solution of

$$(1 + x^2)y'' + (1 + 4x^2)y = 0, x > 0$$

- y(0) = 0. Then y has
- 1. infinitely many zeroes in [0, 1]
- 2. infinitely many zeroes in [1, ∞)
- 3. at least n zeroes in $[0, n\pi]$, $\forall n \in \mathbb{N}$
- 4. at most 3n zeroes in $[0, n\pi]$, $\forall n \in \mathbb{N}$
- 117. A possible initial strip $(x_0, y_0, z_0, p_0, q_0)$ for the Cauchy problem pq = 1 where

$$p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$$
 and $\mathbf{x}_0(\mathbf{s}) = \mathbf{s}, \quad \mathbf{y}_0(\mathbf{s}) = -\frac{1}{s},$

 $z_0(s) = 1 \text{ for } s > 1 \text{ is}$

1.
$$\left(s, \frac{1}{s}, 1, \frac{1}{s}, s\right)$$

$$2.\left(s,\frac{1}{s},1,-\frac{1}{s},-s\right)$$

3.
$$\left(s, \frac{1}{s}, 1, \frac{1}{s}, -s\right)$$

4.
$$\left(s, \frac{1}{s}, 1, -\frac{1}{s}, s\right)$$

JUNE-2020

PART-B

118. Let k be a positive integer. Consider the differential equation

$$\begin{cases} \frac{dy}{dt} = y^{\frac{5k}{5k+2}} & \text{for } t > 0, \\ y(0) = 0 \end{cases}$$

Which of the following statements is true?

- 1. It has a unique solution which is continuously differentiable on $(0, \infty)$
- 2. It has at most two solutions which are continuously differentiable on $(0, \infty)$
- 3. It has infinitely many solutions which are continuously differentiable on $(0, \infty)$
- It has no continuously differentiable solution on (0, ∞)
- 119. Let $y_0 > 0$, $z_0 > 0$ and $\alpha > 1$. Consider the following two different equations:

$$(*)\begin{cases} \frac{dy}{dt} = y^{\alpha} & for \ t > 0, \\ y(0) = y_0 \end{cases}$$

$$(**) \begin{cases} \frac{dz}{dt} = -z^{\alpha} & for \ t > 0, \\ z(0) = z_{\alpha} \end{cases}$$

We say that the solution to a differential equation exists globally if it exists for all t > 0.

Which of the following statements is true?

- 1. Both (*) and (**) have global solutions
- 2. None of (*) and (**) have global solutions

- 3. There exists a global solution for (*) and there exists a T < ∞ such that $\lim_{t \to T} |z(t)| = +\infty$
- 4. There exists a global solution for (**) and there exists a T < ∞ such that $\lim_{t \to T} |y(t)| = +\infty$
- **120.** The general solution of the surfaces which are perpendicular to the family of surfaces

$$z^2 = kxy, k \in \mathbb{R}$$
 is

1.
$$\phi(x^2 - y^2, xz) = 0, \phi \in C^1(\mathbb{R}^2)$$

2.
$$\phi(x^2 - y^2, x^2 + z^2) = 0, \phi \in C^1(\mathbb{R}^2)$$

3.
$$\phi(x^2 - y^2, 2x^2 + z^2) = 0, \phi \in C^1(\mathbb{R}^2)$$

4.
$$\phi(x^2 + y^2, 3x^2 - z^2) = 0, \phi \in C^1(\mathbb{R}^2)$$

121. The general solution of the equation

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$$

is

1.
$$z = \varphi\left(\frac{|x|}{|y|}\right), \varphi \in C^1(\mathbb{R})$$

2.
$$z = \varphi\left(\frac{x-1}{v}\right), \varphi \in C^1(\mathbb{R})$$

3.
$$z = \varphi\left(\frac{x+1}{y}\right), \varphi \in C^1(\mathbb{R})$$

4.
$$z = \varphi(x/+/y/), \varphi \in C^1(\mathbb{R})$$

PART - C

122. The following two-point boundary value problem

$$\begin{cases} y''(x) + \lambda y(x) = 0 \text{ for } x \in (0, \pi) \\ y(0) = 0 \\ y(\pi) = 0 \end{cases}$$

has a trivial solution y = 0. It also has a non-trivial solution for

1. no values of $\lambda \in \mathbb{R}$

2. $\lambda = 1$

3. $\lambda = n^2$ for all $n \in \mathbb{N}$, n > 1

4. $\lambda \leq 0$

123. Let A be an $n \times n$ matrix with distinct eigenvalues $(\lambda_1, ..., \lambda_n)$ with corresponding

linearly independent eigenvectors $(v_1, ..., v_n)$.

Then, the non-homogenous differential equation

$$x'(t) = Ax(t) + e^{\lambda_1 t} v_1$$

- 1. does not have a solution of the form $e^{\lambda_1 t}a$ for any vector $a \in \mathbb{R}^n$
- 2. has a solution of the form $e^{\lambda_1 t}a$ for some vector $a \in \mathbb{R}^n$
- 3. has a solution of the form $e^{\lambda_1 t}a + te^{\lambda_1 t}b$ for some vectors a, $b \in \mathbb{R}^n$
- 4. does not have a solution of the form $e^{\lambda_1 t}a + te^{\lambda_1 t}b$ for any vectors a, $b \in \mathbb{R}^n$
- 124. Consider the solutions

$$\mathbf{y}_1 \coloneqq \begin{pmatrix} e^{-3t} \\ e^{-3t} \\ 0 \end{pmatrix} \text{ and } \mathbf{y}_2 \coloneqq \begin{pmatrix} 0 \\ e^{-5t} \\ e^{-5t} \end{pmatrix}$$

be the homogenous linear system of differential equation

(*)
$$y'(t) = \begin{pmatrix} -5 & 2 & -2 \\ 1 & -4 & -1 \\ -1 & 1 & -6 \end{pmatrix} y(t).$$

Which of the following statements are true?

- y₁ and y₂ form a basis for the set of all solutions to (*)
- y₁ and y₂ are linearly independent but do not form a basis for the set of all solutions to (*)
- 3. There exists another solution y₁ such that (y₁, y₂, y₃) form a basis for the set of all solutions to (*)
- 4. y₁ and y₂ are linearly dependent
- **125.** Consider the partial differential equations

(i)
$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + (1 - \operatorname{sgn}(y)) \frac{\partial^2 u}{\partial y^2} = 0$$

(ii)
$$y \frac{\partial^2 u}{\partial x^2} + x \frac{\partial^2 u}{\partial y^2} = 0$$

Ph: 9876788051, 9650838031

Which of the following statements are true?

- 1. Equation (i) is parabolic for y > 0 and elliptic for y < 0
- 2. Equation (i) is hyperbolic for y > 0 and elliptic for y < 0
- Equation (ii) is elliptic in I and III quadrant and hyperbolic in II and IV quadrant
- 4. Equation (ii) is hyperbolic in I and III quadrant and elliptic in II and IV quadrant
- 126. Consider the Cauchy problem

$$\begin{cases} \frac{\partial^2 u}{\partial x \partial y} = 0, & |x| < 1, 0 < y < 1 \\ u(x, x^2) = 0, & \frac{\partial u}{\partial y}(x, x^2) = g(x), |x| < 1 \end{cases}$$

Which of the following statements are true?

- 1. A necessary condition for a solution to exist is that g is an odd function
- 2. A necessary condition for a solution to exist is that g is an even function
- 3. The solution (if it exists) is given by $u(x, y) = 2 \int_{x}^{\sqrt{y}} zg(z) dz$
- 4. The solution (if it exists) is given by $u(x, y) = 2 \int_{\sqrt{y}}^{x^2} zg(z) dz$

JUNE-2021

PART - B

127. Consider the following two initial value ODEs

(A)
$$\frac{dx}{dt} = x^3, x(0) = 1;$$

(B)
$$\frac{dx}{dt} = x \sin x^2, x(0) = 2.$$

Related to these ODEs, we make the following assertions.

- I. The solution to (A) blows up in finite time
- II. The solution to (B) blows up in finite time

Which of the following statements is true?

- 1. Both (I) and (II) are true
- 2. (I) is true but (II) is false
- 3. Both (I) and (II) are false
- 4. (I) is false but (II) is true

128. Let u(x, y) solve the Cauchy problem

$$\frac{\partial u}{\partial y} - x \frac{\partial u}{\partial x} + u - 1 = 0 \text{ where } -\infty < \mathbf{x} < \infty,$$

 $y \ge 0$ and $u(x, 0) = \sin x$. Then u(0, 1) is equal to

1.
$$1 - \frac{1}{e}$$

2.
$$1 + \frac{1}{e}$$

1.
$$1 - \frac{1}{e}$$
2. $1 + \frac{1}{e}$
3. $1 - \frac{1 - \sin e}{e}$
4. $1 + \frac{1 - \sin e}{e}$

$$4.1 + \frac{1 - \sin e}{e}$$

129. If y(x) is a solution of the equation 4xy'' +2y' + y = 0.

Satisfying y(0) = 1. Then y''(0) is equal to

1. 1/24

2. 1/12 4. 1/2

- 3. 1/6
- 130. Which of the following partial differential equations is NOT PARABOLIC for all x,

1.
$$x^2 \frac{\partial^2 u}{\partial x \partial y} - 2xy \frac{\partial u}{\partial y} + y^2 = 0$$

2.
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$

3.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$

4.
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$

PART - C

131. Consider the Euler method for integration of the system of differential equations

$$\dot{x} = -y$$

$$\dot{y} = x$$

Assume that (x_i^n, y_i^n) are the points obtained for i = 0, 1, ..., n² using a timestep h = 1/n starting at the initial point $(x_0,$ y_0) = (1, 0). Which of the following statements are true?

- 1. The points (x_i^n, y_i^n) lie on a circle of
- 2. $\lim_{n\to\infty} (x_n^n, y_n^n) = (\cos(1), \sin(1))$
- 3. $\lim_{n\to\infty} (x_2^n, y_2^n) = (1,0)$

Ph: 9876788051, 9650838031

- 4. $(x_i^n)^2 + (y_i^n)^2 > 1$ for $i \ge 1$
- 132. Let u be a positive eigenfunction with eigenvalue λ for the boundary value problem

$$\ddot{u} + 2\dot{u} + a(t)u = \lambda u, \ \dot{u}(0) = 0 = \dot{u}(1),$$

where a : $[0, 1] \rightarrow (1, \infty)$ is a continuous function. Which of the following statements are possibly true?

1. $\lambda > 0$

2. $\lambda < 0$

3.
$$\int_0^1 (\dot{u})^2 dt = 2 \int_0^1 u \, \dot{u} dt + \int_0^1 (a(t) - \lambda) u^2 \, dt$$

 $4. \lambda = 0$

Let u(x, y) solve the partial differential 133.

equation (PDE)
$$x^2 \frac{\partial^2 u}{\partial x \partial y} + 3y^2 u = 0$$
 with

 $u(x, 0) = e^{1/x}$.

Which of the following statements are

- 1. The PDE is not linear
- 2. $u(1, 1) = e^2$
- 3. $u(1, 1) = e^{-2}$
- 4. The method of separation of variables can be utilized to compute the solution
- Which of the following expressions for u = 134. u(x, t) are solutions of $u_t - e^{-t}u_x + u = 0$ with u(x, 0) = x?
 - 1. $e^{t}(x + e^{t} 1)$ 2. $e^{-t}(x e^{-t} + 1)$

 - 3. $x e^{t} + 1$ 4. xe^{t}
- 2nd 135. order ODE Consider the $\ddot{x} + p(t)\dot{x} + q(t)x = 0$ and let x_1 , x_2 be two solutions of this ODE in [a, b]. Which of the following statements are true for the Wronskian W of x_1 , x_2 ?
 - 1. $W \equiv 0$ in (a, b) implies that x_1 , x_2 are independent
 - 2. W can change sign in (a, b)
 - 3. $W(t_0) = 0$ for some $t_0 \in (a, b)$ implies that $W \equiv 0$ in (a, b)
 - 4. $W(t_0) = 1$ for some $t_0 \in (a, b)$ implies that $W \equiv 1$ in (a, b)
- Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a non-zero smooth 136. vector field satisfying divf ≠ 0. Which of the following are necessarily true for ODE $\dot{x} = f(x)$?
 - 1. There are no equilibrium points
 - 2. There are no periodic solutions
 - 3. All the solutions are bounded
 - 4. All the solutions are unbounded

InfoStudy

BE INFORMED BE LEARNED

JUNE-2022

PART - B

Let G : [0, 1] \times [0, 1] \rightarrow \mathbb{R} be defined 137. $\operatorname{as} G(t,x) = \begin{cases} t(1-x) & \text{if } t \leq x \leq 1 \\ x(1-t) & \text{if } x \leq t \leq 1 \end{cases} \text{ For a}$ continuous function f on [0,1], define $I[f] = \int_0^1 \int_0^1 G(t, x) f(t) f(x) dt dx$.

Which of the following is true?

- 1. I[f] > 0 if f is not identically zero
- 2. There exists non-zero f such that I[f] = 0
- 3. There is f such that I[f] < 0
- 4. $I[\sin(\pi x)] = 1$
- Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and 138. f(t, x) < 0 if tx > 0f(t, x) > 0 if tx < 0Consider the problem of solving the following

 $\dot{x} = f(t, x), x(0) = 0$

Which of the following is true?

- 1. There exists a unique local solution
- 2. There exists a local solution but may not be unique
- 3. There may not exist any solution
- 4. If local solution exists then it is unique.
- 139. Consider the second order PDE auxx + $bu_{xy} + au_{yy} = 0$ in \mathbb{R}^2 , for a, b $\in \mathbb{R}$. Which of the following is true?
 - 1. The PDE is hyperbolic for $b \le 2a$
 - 2. The PDE is parabolic for $b \le 2a$
 - 3. The PDE is elliptic for |b| < 2|a|
 - 4. The PDE is hyperbolic for |b| < 2|a|
- 140. Let u(x, t) be a smooth solution to the wave equation (*) $\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial r^2} = 0$ for (x, t)

 $\in \mathbb{R}^2$. Which of the following is false?

- 1. $u(x \theta, t)$ also solves the wave equation (*) for any fixed $\theta \in \mathbb{R}$
- $\frac{\partial u}{\partial x}$ also solves the wave equation (*)
- 3. u(3x, 9t) also solves the equation (*)
- 4. u(3x, 3t) also solves the wave equation (*)

PART - C

- 141. Let u be a solution of following PDE $u_{x} + xu_{y} = 0$ $u(x, 0) = e^{x}$ which statements are true
 - 1. $u(2, 1) = e^2$ 2. $u\left(1, \frac{1}{2}\right) = 1$ 3. $u(-2, 1) = e^{-\sqrt{2}}$ 4. $u(-2, 1) = e^{\sqrt{2}}$
- 142. Consider the two following initial value problem
 - (I) $y'(x) = y^{\frac{1}{3}}$ (II) $y'(x) = -y^{\frac{1}{3}}$ y(0) = 0y(0) = 0

Which of the following statements are true

- 1. I is uniquely solvable
- 2. II is uniquely solvable
- 3. I has multiple solution
- 4. II has multiple solution
- 143. Consider the linear system y' = Ay + h

where
$$A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$$
 and $h = \begin{pmatrix} 3t+1 \\ 2t+5 \end{pmatrix}$.

Suppose y(t) is a solution such that

$$\lim_{t\to\infty}\frac{y(t)}{t}=\mathsf{d}\in\mathbb{R}^2.$$

What is the value of d?

1.
$$\begin{pmatrix} -\frac{4}{3} \\ -\frac{5}{3} \end{pmatrix}$$
2.
$$\begin{pmatrix} \frac{4}{3} \\ -\frac{5}{3} \end{pmatrix}$$
3.
$$\begin{pmatrix} \frac{2}{3} \\ -\frac{5}{3} \end{pmatrix}$$
4.
$$\begin{pmatrix} -\frac{2}{3} \\ -\frac{5}{3} \end{pmatrix}$$

144. Let $A \in M_3(\mathbb{R})$ be skew-symmetric and let $x:[0,\infty)\to\mathbb{R}^3$ be a solution of x'(t) = Ax(t), for all $t \in (0, \infty)$. Which of the following statements are

true?

- 1. ||x(t)|| = ||x(0)||, for all $t \in (0, \infty)$.
- 2. For some $a \in \mathbb{R}^3 \setminus \{0\}, ||x(t) a|| = ||$ x(0) - a||, for all $t \in (0, \infty)$
- 3. $x(t) x(0) \in \text{imA}$, for all $t \in (0, \infty)$
- 4. $\lim_{t\to\infty} x(t)$ exists

JUNE-2023

PART - B

145. Let u(x, t) be the solution of

$$u_{tt} - u_{xx} = 0,$$
 $0 < x < 2, t > 0,$

$$u(0, t) = 0 = u(2, t),$$

$$\forall t > 0$$
,

$$u(x, 0) = \sin(\pi x) + 2\sin(2\pi x), \quad 0 \le x \le 2,$$

$$0 \le x \le 2$$

$$u_t(x, 0) = 0,$$

$$0 \le x \le 2$$
.

Which of the following is true?

$$(1) u(1, 1) = -1$$

(1)
$$u(1, 1) = -1$$
 (2) $u(1/2, 1) = 0$

- (3) u(1/2, 2) = 1
- (4) u_t (1/2, 1/2) = π
- 146. Let u(x, y) be the solution of the Cauchy problem

$$uu_x + u_y = 0, x \in \mathbb{R}, y > 0$$

$$u(x, 0) = x, x \in \mathbb{R}$$

Which of the following is the value of u(2, 3)?

- (1) 2
- (2) 3
- (3) 1/2
- (4) 1/3
- Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a locally Lipschitz 147. function. Consider the initial value problem

$$\dot{x} = f(t, x), x(t_0) = x_0$$

for $(t_0, x_0) \in \mathbb{R}^2$. Suppose that $J(t_0, x_0)$ represents the maximal interval of existence for the initial value problem. Which of the following statements is true?

- (1) $J(t_0, x_0) = \mathbb{R}$
- (2) $J(t_0, x_0)$ is an open set
- (3) $J(t_0, x_0)$ is a closed set
- (4) $J(t_0, x_0)$ could be an empty set
- 148. Suppose x(t) is the solution of the following initial value problem in \mathbb{R}^2

$$\dot{x} = Ax, x(0) = x_0$$
, where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

Which of the following statements is true?

- (1) x(t) is a bounded solution for some x_0 **≠** 0
- (2) $e^{-6t}|x(t)| \to 0$ as $t \to \infty$, for all $x_0 \neq 0$
- (3) $e^{-t}|x(t)| \to \infty$ as $t \to \infty$, for all $x_0 \ne 0$
- (4) $e^{-10t} |x(t)| \to 0$ as $t \to \infty$, for all $x_0 \ne 0$

PART - C

149. Consider the following initial value problem (IVP),

$$\frac{du}{dt} = t^2 u^{\frac{1}{5}}, u(0) = 0.$$

Which of the following statements are correct?

- (1) The function $g(t,u) = t^2 u^{\frac{1}{5}}$ does not satisfy the Lipschitz's condition with respect to u in any neighbourhood of u = 0
- There is no solution for the IVP
- There exist more than one solution for the IVP
- (4) The function $g(t,u) = t^2 u^5$ satisfies the Lipschitz's condition with respect to u in some neighbourhood of u = 0and hence there exists a unique solution for the IVP.
- Let u: $\mathbb{R}^2 \to \mathbb{R}$ be the solution to the 150. Cauchy problem:

$$\begin{cases} \partial_x u + 2\partial_y u = 0 & for (x, y) \in \mathbb{R}^2, \end{cases}$$

 $u(x,y) = \sin(x)$ for $y = 3x + 1, x \in \mathbb{R}$ Let v: $\mathbb{R}^2 \to \mathbb{R}$ be the solution to the

Cauchy problem: $\int \partial_x v + 2\partial_y v = 0 \quad \text{for } (x, y) \in \mathbb{R}^2,$

$$\begin{cases} \partial_x v + 2\partial_y v = 0 & for (x, y) \in \mathbb{R}^2, \\ v(x, 0) = \sin(x) & for x \in \mathbb{R} \end{cases}$$

Let $S = [0, 1] \times [0, 1]$.

Which of the following statements are

- (1) u changes sign in the interior of S.
- (2) u(x, y) = v(x, y) along a line in S.
- (3) v changes sign in the interior of S.
- (4) v vanishes along a line in S.
- 151. Let us consider the following two initial value problems

$$(P) \begin{cases} x'(t) = \sqrt{x(t)}, & t > 0, \\ x(0) = 0, \end{cases}$$
 and
$$(Q) \begin{cases} y'(t) = -\sqrt{y(t)}, & t > 0, \\ y(0) = 0. \end{cases}$$

(Q)
$$\begin{cases} y'(t) = -\sqrt{y(t)}, & t > 0, \\ y(0) = 0. \end{cases}$$

Which of the following statements are true?

- (1) (P) has a unique solution in $[0, \infty)$.
- (2) (Q) has a unique solution in $[0, \infty)$.
- (3) (P) has infinitely many solutions in $[0, \infty)$.
- (4) (Q) has infinitely many solutions in $[0, \infty)$.

(IS) InfoStudy

BE INFORMED BE LEARNED

152. Let u = u(x, y) be the solution to the following Cauchy problem

$$\mathbf{u}_{\mathbf{x}} + \mathbf{u}_{\mathbf{y}} = \mathbf{e}^{\mathbf{u}} \text{ for } (\mathbf{x}, \ \mathbf{y}) \in \mathbb{R} \times \left(0, \frac{1}{e}\right) \text{and}$$

 $u(x, 0) = 1 \text{ for } x \in \mathbb{R}.$

Which of the following statements are true?

(1)
$$u\left(\frac{1}{2e}, \frac{1}{2e}\right) = 1$$

(2)
$$u_x \left(\frac{1}{2e}, \frac{1}{2e} \right) = 0$$

(3)
$$u_y \left(\frac{1}{4e}, \frac{1}{4e} \right) = \log 4$$

(4)
$$u_y \left(0, \frac{1}{4e} \right) = \frac{4e}{3}$$

153. Let $f \in C^1(\mathbb{R})$ be bounded. Let us consider the initial value problem

(P)
$$\begin{cases} x'(t) = f(x(t)), t > 0, \\ x(0) = 0. \end{cases}$$

Which of the following statements are true?

- (1) (P) has solution (s) defined for all t > 0.
- (2) (P) has a unique solution.
- (3) (P) has infinitely many solutions.
- (4) The solution(s) of (P) is/are Lipschitz.

DECEMBER-2023

PART - B

154. Consider the Cauchy problem for the wave equation

$$\frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 0, \quad -\infty < x < \infty, \quad t > 0,$$

$$u(x,0) = \begin{cases} e^{\left(-\frac{1}{x^2}\right)}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

$$\frac{\partial u}{\partial t}(x,0) = xe^{-x^2}, \ \mathbf{x} \in \mathbb{R}.$$

Which one of the following is true?

- (1) $\lim_{t \to \infty} u(5,t) = 1$
- $(2) \lim_{t\to\infty} u(5,t) = 2$
- (3) $\lim_{t \to \infty} u(5,t) = \frac{1}{2}$

- (4) $\lim_{t \to \infty} u(5,t) = 0$
- **155.** The following partial differential equation

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} - 3y^{2} \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

is

- (1) elliptic in $\{(x, y) \in \mathbb{R}^2 : y > 0\}$
- (2) parabolic in $\{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$
- (3) hyperbolic in $\{(x, y) \in \mathbb{R}^2 : xy \neq 0\}$
- (4) parabolic in $\{(x, y) \in \mathbb{R}^2 : xy \neq 0\}$
- **156.** The smallest real number λ for which the problem

$$-y'' + 3y = \lambda y$$
, $y(0) = 0$, $y(\pi) = 0$ has a non-trivial solution is

- (1) 3
- (2) 2
- (3)1
- (4) 4

PART - C

157. Consider the following initial value problem

$$y' = y + \frac{1}{2} |\sin(y^2)|, \quad x > 0, \quad y(0) = -1$$

Which of the following statements are true?

- (1) there exists an $\alpha \in (0, \infty)$ such that $\lim_{x \to \alpha^{-}} |y(x)| = \infty$
- (2) y(x) exists on $(0, \infty)$ and it is monotone
- (3) y(x) exists on (0, ∞), but not bounded below
- (4) y(x) exists on (0, ∞), but not bounded
- **158.** Let B = {(x, y) $\in \mathbb{R}^2 : x^2 + y^2 < 1$ } be the open unit disc in \mathbb{R}^2 , $\partial B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ be its boundary and $\overline{B} = B \cup \partial B$. For $\lambda \in (0, \infty)$, let S_{λ} be the set of twice

continuously differentiable functions in B, that are continuous on \overline{B} and satisfy

$$\left(\frac{\partial u}{\partial x}\right)^2 + \lambda \left(\frac{\partial u}{\partial y}\right)^2 = 1, in B$$

 $u(x, y) = 0 \text{ on } \partial B.$

Then which of the following statements are true?

- (1) $S_1 = \emptyset$
- (2) $S_2 = \emptyset$
- (3) S₁ has exactly one element and S₂ has exactly two elements
- (4) S₁ and S₂ are both infinite

InfoStudy

BE INFORMED BE LEARNED

159. Consider the Cauchy problem

$$u\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 1$$
, $(x, y) \in \mathbb{R} \times (0, \infty)$,

u(x, 0) = kx, $x \in \mathbb{R}$,

with a given real parameter k. For which of the following values of k does the above problem have a solution defined on \mathbb{R} \times $(0, \infty)$?

- (1) k = 0
- (2) k = -2
- (3) k = 4
- (4) k = 1
- 160.

Consider the problem
$$y' = (1 - y^2)^{10}\cos y$$
, $y(0) = 0$.

Let J be the maximal interval of existence and K be the range of the solution of the above problem. Then which of the following statements are true?

- (1) $J = \mathbb{R}$
- (2) K = (-1, 1)
- (3) J = (-1, 1)
- (4) K = [-1, 1]
- 161. Consider the initial value problem

$$x^2y'' - 2x^2y' + (4x - 2)y = 0, y(0) = 0.$$

Suppose $y = \varphi(x)$ is a polynomial solution satisfying $\varphi(1) = 1$. Which of the following statements are true?

- (1) $\varphi(4) = 16$
- (2) $\varphi(2) = 2$
- (3) $\varphi(5) = 25$
- (4) $\varphi(3) = 3$

JUNE-2024

PART - B

162. If u = u(x, t) is the solution of the initial

satisfying $|u(x,t)| < 3e^{x^2}$ for all $x \in \mathbb{R}$ and t > 0, then

$$(1) \quad u\left(\frac{\pi}{8},1\right) + u\left(-\frac{\pi}{8},1\right) = 2$$

$$(2) \ u\left(\frac{\pi}{8},1\right) = u\left(-\frac{\pi}{8},1\right)$$

(3)
$$u\left(\frac{\pi}{8},1\right) + 2u\left(-\frac{\pi}{8},1\right) = 2$$

(4)
$$u\left(\frac{\pi}{8},1\right) = -u\left(-\frac{\pi}{8},1\right)$$

163. Consider the initial value problem (IVP)

$$\begin{cases} y'(x) = \sqrt{|y(x)+\epsilon|}, & x \in \mathbb{R}, \\ y(0) = y_0. \end{cases}$$

Ph: 9876788051, 9650838031

Consider the following statements:

- S_1 : There is an $\epsilon > 0$ such that for all $y_0 \in$
- \mathbb{R} , the IVP has more than one solution.

 S_2 : There is a $y_0 \in \mathbb{R}$ such that for all $\epsilon >$ 0. the IVP has more than one solution Then

- (1) both S₁ and S₂ are true
- (2) S₁ is true but S₂ is false
- (3) S₁ is false but S₂ is true
- (4) both S₁ and S₂ are false
- 164. Let u = u(x, t) be the solution of the followoing initial value problem

$$\begin{cases} u_t + 2024u_x = 0, & x \in \mathbb{R}, t > 0 \\ u(x,0) = u_0(x), & x \in \mathbb{R} \end{cases}$$

where $u_0: \mathbb{R} \to \mathbb{R}$ is an arbitrary C^1 function. Consider the following statements:

 S_1 : If $A_t = \{x \in \mathbb{R} : u(x, t) < 1\}$ and $|A_t|$ denotes the Lebesgue measure of At for every $t \ge 0$, then $|A_t| = |A_0|$, $\forall t > 0$.

S₂: If u₀ is Lebesgue integrable, then for every t > 0, the function $x \mapsto u(x, t)$ is

Lebesgue integrable.

Then

- (1) both S₁ and S₂ are true
- (2) S₁ is true but S₂ is false
- (3) S₂ is true but S₁ is false
- (4) both S₁ and S₂ are false
- 165. Let φ denote the solution to the boundary value problem (BVP)

$$\begin{cases} (xy')' - 2y' + \frac{y}{x} = 1, & 1 < x < e^4 \end{cases}$$

y(1) = 0, $y(e^4) = 4e^4$.

Then the value of $\varphi(e)$ is

- $(1) \frac{e}{2}$

- (4) e

PART - C

166. If $x_1 = x_1$ (t), $x_2 = x_2$ (t) is the solution of the initial value problem

$$e^{-t} \frac{dx_1}{dt} = -x_1 + x_2,$$

$$e^{-t} \frac{dx_2}{dt} = -x_1 - x_2,$$

$$x_1(0) = 1, x_2(0) = 0.$$

and $r(t) = \sqrt{x_1^2(t) + x_2^2(t)}$, then which of the following statements are true?

- (1) $r(t) \rightarrow 0$ as $t \rightarrow +\infty$
- (2) $r(\ln 2) = e^{-1}$
- (3) $r(\ln 2) = 2e^{-1}$
- (4) $r(t)e^t \rightarrow 0$ as $t \rightarrow +\infty$
- 167. Consider the initial boundary value problem (IBVP)

$$\begin{cases} u_t + u_x = 2u, & x > 0, t > 0 \\ u(0,t) = 1 + \sin t, & t > 0 \\ u(x,0) = e^x \cos x, & x > 0 \end{cases}$$

If u is the solution of the IBVP, then the value of $\frac{u(2\pi,\pi)}{u(\pi,2\pi)}$ is

- (1) e^{π}
- (3) $-e^{\pi}$
- (4) –e^{-π}
- Let B(0, 2) = $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}$, and 168. ∂B denote the boundary of B(0, 2). Assume $(\alpha, \beta) \neq (0, 0), k \in \mathbb{R}$ and u is any solution to

$$\begin{cases}
-\Delta u = 0 & \text{in } B(0,2) \\
\alpha u(x,y) + \beta \frac{\partial u}{\partial y}(x,y) = 1 + (x^2 + y^2)k & \text{on } \partial B,
\end{cases}$$

where v(x, y) is the unit outward normal to B(0, 2) at $(x, y) \in \partial B$. Consider the following statements:

 S_1 : If β = 0, then there exists a $(x_0, y_0) \in$

B(0, 2) such that
$$|u(x_0, y_0)| = \frac{|1+4k|}{|\alpha|}$$
.

$$S_2$$
: If $\alpha = 0$, then $k = -\frac{1}{4}$.

- (1) S_1 is true but S_2 is false
- (2) S₂ is true but S₁ is false
- (3) both S₁ and S₂ are true
- (4) both S_1 and S_2 are false
- 169. Consider the initial value problem (IVP)

$$y'(x) = \frac{\sin(y(x))}{1 + y^4(x)}, x \in \mathbb{R},$$

Then which of the following statements are true?

- (1) There is a positive y_0 such that the solutuon of the IVP is unbounded
- (2) There is a negative y₀ such that the solution of the IVP is bounded
- (3) For every $y_0 \in \mathbb{R}$, every solution of the IVP is bounded

- (4) For every $y_0 \in \mathbb{R}$, there is a solution of the IVP for all $x \in \mathbb{R}$
- 170. Consider the boundary value problem (BVP)

$$(e^{-5x}y')' + 6e^{-5x}y = -f(x), 0 < x < \ln 2,$$

$$y(0) = 0$$
, $y(\ln 2) = 0$.

$$G(x,\xi) = \begin{cases} (e^{3x} + Be^{2x})(Ce^{2\xi} + De^{3\xi}), & 0 \le \xi \le x, \\ (e^{3\xi} + Be^{2\xi})(Ce^{2x} + De^{3x}), & x \le \xi \le \ln 2, \end{cases}$$
(Green's function) is such that

$$\int_0^{\ln 2} G(x,\xi) \, f(\xi) \, d\xi$$
 is the solution of the

BVP, then the values of B, C and D are

- (1) B = -2, C = -1, D = 1
- (2) B = -2, C = 1, D = -1
- (3) B = 2, C = 1, D = 1
- (4) B = 2, C = -1, D = -1

DECEMBER-2024

PART - B

171. Suppose that the differential equation

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + e^{2x}y = 0, x \in \mathbb{R}$$

transforms into a second order differential equation with constant coefficients under the change of independent variable given

by s=s(x) satisfying
$$\frac{ds}{dx}(0) = 1$$
. Then

which of the following statements is true?

- (1) $e^{-x}(P(x)+1)$ is a constant function on
- (2) $e^{-2x}(P(x))$ is a constant function on \mathbb{R}

(3)
$$s(x) = \frac{e^{2x}}{2}, x \in \mathbb{R}$$

- (4) $P(x) \rightarrow 1$ as $x \rightarrow \infty$
- 172. Let u = u(x, y) be the solution of the Cauchy problem

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u, (x, y) \neq (0,0),$$

$$u(x,1) = \sqrt{1+x^2}, x \in \mathbb{R}.$$

Then which of the following statements is true?

(1)
$$u(1,0) = 0$$

- (2) $u(x_1, y_1) = u(x_2, y_2)$ whenever $x_1^2 + y_1^2 = x_2^2 + y_2^2$
- (3) $u(1, y) = \sqrt{2} \text{ for all } y \in \mathbb{R}$
- (4) $u(x_1, y_1) = u(x_2, y_2)$ whenever $x_1 + y_1 = x_2 + y_2$
- **173.** Let u = u(x,t) be a solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, x \in \mathbb{R}, t > 0 \text{ satisfying the}$$

condition $u(0,t) = 0, \forall t \ge 0$. Then which of the following statements is true?

- (1) u(x,t) = 0, whenever x = t
- (2) u(x,t) = 0, whenever x = -t
- (3) u(-x,t) = u(x,t),whenever x > 0, t > 0
- (4) u(-x,t) = -u(x,t), whenever $0 < x \le t$
- 174. Given that $y_1(x) = e^{2x}$ is a solution of the ordinary differential equation (ODE)

$$x\frac{d^2y}{dx^2} - (3+4x)\frac{dy}{dx} + (4x+6)y = 0, x > 0$$

Let
$$y_2 = y_2(x)$$

be the solution of the ODE satisfying the

conditions
$$y_2(1) = \frac{e^2}{4}, \frac{dy_2}{dx}(1) = \frac{3e^2}{2}$$
. Then

which of the following statements is true? (1) y_2 is a strictly increasing function on

- $(0, \infty)$ (2) $e^{-2x} y_2(x) \to 1 \text{ as } x \to \infty$
- (3) y_2 is a strictly decreasing function on $(0,\infty)$
- (4) $e^{-2x}y_2(x) \rightarrow 0$ as $x \rightarrow \infty$

PART - C

175. Consider the non-homogeneous ordinary differential equation (ODE)

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = \sin(e^{-5x}), x > 0.$$
 Then

which of the following statements are true?

- (1) Every solution of the ODE is bounded on $(0,\infty)$.
- (2) There exists a solution of the ODE which is

unbounded on $(0, \infty)$.

- (3) Every solution of the ODE is unbounded on $(0, \infty)$.
- (4) Every solution of the ODE tends to zero as x→∞
- 176. If x = x(t), y = y(t) is the solution of the initial value problem

$$\frac{dx}{dt} = x - 4e^{-2t}y,$$

$$\frac{dy}{dt} = e^{2t}x - y$$
, $x(0) = 1$, $y(0) = 1$, then

which of the following statements are true?

- $(1) \lim_{t \to \infty} t^{-2} x(t) y(t) = 0$
- (2) x(1) = 0, $y\left(\frac{1}{2}\right) = 0$
- (3) $x\left(\frac{1}{2}\right) = 0$, y(1) = 0
- (4) $\lim_{t \to \infty} t^{-2} x(t) y(t) = 2$
- **177.** For $b \in \mathbb{R}$, $let \ y_b = y_b(x)$ be the unique solution of the initial value problem

$$\frac{dy}{dx} = y^5 + y^4 + y^3 + y^2 + y + 1, y(0) = b$$

defined on its maximal interval of existence I_b. Then which of the following statements are true?

- (1) There exists an $\alpha \in (0, \infty)$ such that for every $b \in \mathbb{R}$ with $b > \alpha$, the solution y_b is bounded above on I_b .
- (2) There exists an $\alpha \in (0, \infty)$ such that for every $b \in \mathbb{R}$ with $b > \alpha$, the solution y_b is bounded below on I_b .
- (3) There exists an $\alpha \in (-\infty,0)$ such that for every $b \in \mathbb{R}$ with $b < \alpha$, the solution y_b is bounded above on I_b .
- (4) There exists an $\alpha \in (-\infty,0)$ such that for every $b \in \mathbb{R}$ with $b < \alpha$, the solution y_b is bounded below on I_b .
- **178.** Let u = u(x, y) be the solution of the boundary value problem

$$\frac{\partial^2 \mu}{\partial x^2} + \frac{\partial^2 \mu}{\partial y^2} = 0, (x, y) \in (0, 1) \times (0, 1),$$

InfoStudy

BE INFORMED BE LEARNED

$$u(x,0) = e^{\pi x}, u(x,1) = -e^{\pi x}, x \in [0,1],$$

$$u(0, y) = \cos(\pi y) + \sin(\pi y), y \in [0,1],$$

$$u(1, y) = e^{\pi}(\cos(\pi y) + \sin(\pi y)), y \in [0,1].$$

Then there exists a

point $(x_0, y_0) \in (0,1) \times (0,1)$ such that

(1)
$$u(x_0, y_0) = \sqrt{2}e^{\pi}$$

(2)
$$u(x_0, y_0) = e^{\pi}$$

$$(3) u(x_0, y_0) = -1$$

(4)
$$u(x_0, y_0) = -e^{\pi}$$

179. Let u = u(x, t) be the solution of the initialboundary value problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, (x, t) \in (0, 1) \times (0, \infty),$$

$$u(x,0) = 4x(1-x), x \in [0,1],$$

$$u(0,t) = u(1,t) = 0, t \ge 0.$$

Then which of the following statements are

(1)
$$\lim_{t \to \infty} u(x,t) = 0$$
 for all $x \in (0,1)$

(2)
$$u(x,t) = u(1-x,t)$$
 for all $x \in (0,1)$, $t > 0$

(3)
$$\int_0^1 (u(x,t))^2 dx$$
 is a non-increasing function of t

(4)
$$\int_0^1 ((x,t))^2 dx$$
 is a non-decreasing function of t

JUNE-2025

PART - B

180. If $\varphi(x) = x$ is a solution of the ordinary differential equation (ODE)

$$\frac{d^2y}{dx^2} - \left(\frac{2}{x^2} + \frac{1}{x}\right) \left(x\frac{dy}{dx} - y\right) = 0, \ 0 < x < \infty,$$

then the general solution of the ODE is given by

(1)
$$(a + be^{-2x})x$$
, $a, b \in \mathbb{R}$

(2)
$$(a + be^{2x})x$$
, $a, b \in \mathbb{R}$

(3)
$$ae^x + bx$$
, $a, b \in \mathbb{R}$

(4)
$$(a + be^x)x$$
, $a, b \in \mathbb{R}$

181. Let
$$u = u(x, t)$$
 be the solution of

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, x \in \mathbb{R}, t > 0,$$

$$u(x, 0) = 1 + x^2, x \in \mathbb{R},$$

$$\frac{\partial u}{\partial t}(x, 0) = x + 1, x \in \mathbb{R}$$

Then the value of u(1, 1) is

$$(2)^{3}$$

182. Let u = u(x, y) be the solution to the Cauchy problem

$$(y+u)\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = x - y, x \in \mathbb{R}, y > 0$$

$$u(x, 1) = 1 + x, x \in \mathbb{R}$$
.

Then which of the following statements is true?

$$(1) u(1, 1) = 2$$

$$(2) u(2, 2) = 4$$

(3)
$$u(3, 3) = \frac{3}{2}$$

(4)
$$u(4, 4) = \frac{2}{3}$$

Let $(\lambda_n)_{n\in\mathbb{N}}$ be the sequence of eigenvalues of the Sturm-Liouville problem 183.

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \frac{\lambda}{x}y = 0, \quad 1 < x < e^{2\pi},$$

$$y(1) = 0, y(e^{2\pi}) = 0.$$

Then
$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n}$$
 is equal to

(1)
$$\frac{\pi^2}{12}$$

(1)
$$\frac{\pi^2}{12}$$
 (2) $\frac{2\pi^2}{3}$ (3) $\frac{\pi^2}{4}$ (4) $\frac{\pi^2}{16}$

(3)
$$\frac{\pi^2}{4}$$

(4)
$$\frac{\pi^2}{16}$$

PART - C

184. Consider the ordinary differential equation

$$\frac{d^2y}{dx^2} + (\cos(x))\frac{dy}{dx} + (\sin(x))y = 0.$$

Let $\varphi_1(x)$, $\varphi_2(x)$ be solutions of ODE, satisfying

$$\varphi_1(0) = 1, \frac{d\varphi_1}{dx}(0) = 0, \text{ and } \varphi_2(x) = 0, \frac{d\varphi_2}{dx}(0) = 1.$$

Then which of the following statements are true?

- 1. $\varphi_1(x+2\pi)$ is also a solution of ODE
- 2. $\varphi_2(x+4\pi)$ is also a solution of ODE
- 3. There are NO constants a, b such that $\varphi_2(x+4\pi) = a\varphi_1(x) + b\varphi_2(x)$
- 4. There exist a, b $\in \mathbb{R}$ such that $\varphi_1(x+2\pi)=a\varphi_1(x)+b\varphi_2(x)$
- **185.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a twice continuously differentiable non-zero function such that $f(tx_1, tx_2) = t^3 f(x_1, x_2)$ for all t > 0 and $(x_1, x_2) \in \mathbb{R}^2$. Which of the following statements are necessarily true?
 - 1. $3\frac{\partial f}{\partial x_1}(1,1) + 3\frac{\partial f}{\partial x_2}(1,1) = f(1,1)$
 - 2. $\frac{\partial f}{\partial x_1}(1,-1) \frac{\partial f}{\partial x_2}(1,-1) = 3f(1,-1)$
 - $x_1^2 \frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) + x_2^2 \frac{\partial f}{\partial x_2}(x_1, x_2)$
 - 3. $+2x_1x_2\frac{\partial^2 f}{\partial x_1\partial x_2}(x_1, x_2) = 6f(x_1, x_2)$
 - $x_1^2 \frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) + x_2^2 \frac{\partial f}{\partial x_2}(x_1, x_2)$
 - 4. $+2x_1x_2 \frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1, x_2) = 9f(x_1, x_2)$
- **186.** For a continuous function q defined on ℝ, consider the ordinary differential equation (ODE)

$$\frac{d^2y}{dx^2} + q(x)y = 0, x \in \mathbb{R}.$$

Then which of the following statements are FALSE?

- There exists a q such that cos(x) and e^xcos(x) are solutions of ODE
- There exists a q such that sin(x) and cos(x) are solutions of ODE
- There exists a q such that e^xsin(x) and e^xcos(2x) are solutions of ODE
- There exists a q such that xe^x and x(x-1)e^x are solutions of ODE
- **187.** Consider the initial value problem (IVP) y' + y = 0, y(0) = 1.

Let (y_n) be the iterates of forward Euler method, applied to the IVP, with step size h where 0 < h < 1.

Then which of the following statements are true?

- The sequence (y_n) does NOT converge
- 2. $y_n \rightarrow 0 \text{ as } n \rightarrow \infty$
- 3. $0 \le y_n \le 1$ for n = 0,1,2,...
- 4. $|y(nh) y_n| \rightarrow 0 \text{ as } n \rightarrow \infty$
- **188.** Suppose u = u(x, y) is the solution of the boundary value problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} = 0 \text{ in } \{(x, y) \in \mathbb{R}\}$$

$$: x^2 + y^2 < 1$$
,

$$u(x, y) = 1 + 2x^2y^2$$
 on $\{(x, y) \in \mathbb{R}\}$

$$: x^2 + y^2 < 1\},$$

Then which of the following statements are true?

- 1. The minimum value of u is 1
- 2. The maximum value of u is 3
- 3. The minimum value of u is 2
- 4. The maximum value of u is $\frac{3}{2}$
- **189.** Let D = $\{(x, y) \in \mathbb{R}^2$

$$:-1 \le x \le 1, -1 \le y \le 1$$
, and $f:D \to \mathbb{R}$

be the function defined by

$$f(x, y) = 1 + \sqrt{y_+}$$
, where $y_+ = max\{y, 0\}$.

Consider the initial value problem (IVP)

$$\frac{dy}{dx} = f(x, y), y(0) = 0.$$

Then which of the following statements are true?

- 1. f is a Lipschtiz continuous function on D
- 2. f is NOT a Lipschtiz continuous function on D
- 3. IVP has at least one solution
- 4. IVP has NO solution
- 190. Consider the Cauchy problem (CP)

$$x\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 1,$$

$$u(0, y) = e^y, y \in \mathbb{R}$$

Then which of the following statements are true?

- 1. There is NO neighbourhood of the origin on which (CP) has a solution
- 2. (CP) has a unique solution defined on some neighbourhood of the origin
- 3. (CP) ha sa unique solution defined on some neighbourhood of the point (0, 1) in the xy-plane
- (CP) has an infinite number of solutions, each of which is defined on some neighbourhood of the origin

(IS) InfoStudy Be informed be learned

Α	N	S	W	/E	R	S

169. (2,3,4)	170. (2)	171. (1)
172. (2)	173. (4)	174. (1)
175. (1,4)	176. (3,4)	177. (2,3)
178. (2,3)	179. (1,2,3)	180. (4)
181. (4)	182. (1)	183. (2)
184. (1,2,4)	185. (2,3)	186. (1,3,4)
187. (2,3,4)	188. (1,4)	189. (2,3)
190. (1)		

